Suppr超能文献

Light-dependent subcellular movement of photoreceptor proteins.

作者信息

Whelan J P, McGinnis J F

机构信息

Mental Retardation Research Center, School of Medicine, University of California, Los Angeles.

出版信息

J Neurosci Res. 1988;20(2):263-70. doi: 10.1002/jnr.490200216.

Abstract

The intracellular localization of photoreceptor-specific proteins 33 kd, beta-transducin, and 48 kd, as determined by immunocytochemistry, is transient and dependent on the lighting environment to which the retina is exposed. Western analysis of the proteins in isolated rod outer segments from mouse retina demonstrates that beta-transducin actually moves from the outer segment to the inner segment in response to light and that 48 kd moves simultaneously in the opposite direction. The light-induced movements appear to be initiated by the absorption of light by rhodopsin because red light, which does not bleach rhodopsin, does not produce this redistribution of photoreceptor proteins. Time course analysis of these movements suggests that the light-induced shift is detectable at the earliest time examined (30 seconds). The bidirectional movement suggests that the photoreceptor cells have at least two distinct dynein-like or kinesin-like translocator molecules that act as microtubule-based motors. This movement appears to be a basic mechanism by which photoreceptor cells rapidly and radically alter the subcellular concentrations of photoreceptor-specific proteins, which in turn may affect the rapid changes in membrane potential that occur during phototransduction.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验