Suppr超能文献

机器学习优化共配置点集以求解 Kohn-Sham 方程。

Machine Learning Optimization of the Collocation Point Set for Solving the Kohn-Sham Equation.

机构信息

Department of Mechanical Engineering , National University of Singapore , Block EA #07-08, 9 Engineering Drive 1 , Singapore 117576 , Singapore.

Chemistry Department , Queen's University , Kingston , Ontario K7L 3N6 , Canada.

出版信息

J Phys Chem A. 2019 Dec 12;123(49):10631-10642. doi: 10.1021/acs.jpca.9b09732. Epub 2019 Dec 2.

Abstract

The rectangular collocation approach makes it possible to solve the Schrödinger equation with basis functions that do not have amplitude in all regions in which wave functions have significant amplitude. Collocation points can be restricted to a small region of space. As no integrals are computed, there are no problems due to discontinuities in the potential, and there is no need to use integrable basis functions. In this paper, we show, for the Kohn-Sham equation, that machine learning can be used to drastically reduce the size of the collocation point set. This is demonstrated by solving the Kohn-Sham equations for CO and HO. We solve the Kohn-Sham equation on a given effective potential which is a critical part of all DFT calculations, and monitor orbital energies and orbital shapes. We use a combination of Gaussian process regression and a genetic algorithm to reduce the collocation point set size by more than an order of magnitude (from about 51 000 points to 2000 points) while retaining mhartree accuracy.

摘要

矩形配置方法使得可以使用在波函数具有显著幅度的所有区域中都没有幅度的基函数来求解薛定谔方程。配置点可以限制在空间的一个小区域内。由于没有计算积分,因此不存在由于势的不连续性而导致的问题,也不需要使用可积基函数。在本文中,我们证明,对于 Kohn-Sham 方程,可以使用机器学习来大大减小配置点集的大小。通过求解 CO 和 HO 的 Kohn-Sham 方程证明了这一点。我们在给定的有效势上求解 Kohn-Sham 方程,这是所有 DFT 计算的关键部分,并监测轨道能量和轨道形状。我们使用高斯过程回归和遗传算法的组合将配置点集的大小减少了一个数量级以上(从大约 51000 个点减少到 2000 个点),同时保持了 mhartree 精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验