Suppr超能文献

微卫星不稳定性状态通过 MSIcall 在 25 种癌症类型中进行靶向测序来确定。

Microsatellite instability status is determined by targeted sequencing with MSIcall in 25 cancer types.

机构信息

Genome Analysis Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan.

Division of Genetics and Clinical Laboratory, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi, Japan.

出版信息

Clin Chim Acta. 2020 Mar;502:207-213. doi: 10.1016/j.cca.2019.11.002. Epub 2019 Nov 13.

Abstract

BACKGROUND

Microsatellite instability (MSI) occurs in solid tumors and is a predictive biomarker for remarkable response to immune checkpoint inhibitors. Detection of MSI status has been conventionally conducted by PCR-electrophoresis-based assay (MSI-PCR) and immunohistochemistry (IHC) of mismatch repair proteins. However, these approaches require visual confirmation and involve some difficulties in determining MSI statuses from equivocal results.

METHODS

We performed amplicon-based targeted sequencing of 76 microsatellite loci (MSI-NGS) in 184 formalin-fixed paraffin-embedded (FFPE) tumor tissues and baseline control samples. A bioinformatics tool, MSIcall, was used to calculate the quantitative values based on the aligned sequence reads and evaluated MSI status. Furthermore, we examined the concordance between the results from MSI-NGS and MSI-PCR/IHC. Diagnostic accuracy, sensitivity, and specificity were estimated by receiver operating characteristic (ROC) curve analysis. For validation cohort, we studied additional 50 tumor samples to determine the MSI status.

RESULTS

Of 184 tumor samples, MSI-PCR and IHC analysis classified 161 tumors as MSS/pMMR and 23 as MSI-H/dMMR. Using MSI-NGS combined with MSIcall, we predicted MSI status with high accuracy (98.9%), specificity (91.3%), and sensitivity (100%) in 25 types of cancers. This method achieved an area under the ROC curve (AUC) value of 0.9986. Furthermore, we achieved the 100% concordant results using additional 50 samples for validation.

CONCLUSION

We demonstrated newly developed MSI-NGS with MSIcall accurately determines the MSI status of FFPE tumor tissues thorough sequencing of tumor samples alone without patient-matched normal controls. This approach can be applied to all types of solid tumors to determine responders to immune-oncology therapy.

摘要

背景

微卫星不稳定性(MSI)发生在实体瘤中,是对免疫检查点抑制剂有显著反应的预测生物标志物。MSI 状态的检测传统上通过基于 PCR-电泳的检测方法(MSI-PCR)和错配修复蛋白的免疫组化(IHC)进行。然而,这些方法需要进行目视确认,并在确定可疑结果的 MSI 状态时存在一些困难。

方法

我们对 184 例福尔马林固定石蜡包埋(FFPE)肿瘤组织和基线对照样本进行了 76 个微卫星位点(MSI-NGS)的基于扩增子的靶向测序。使用 MSIcall 生物信息学工具根据对齐的序列读数计算定量值,并评估 MSI 状态。此外,我们还检查了 MSI-NGS 与 MSI-PCR/IHC 结果之间的一致性。通过接收者操作特征(ROC)曲线分析估计诊断准确性、敏感性和特异性。对于验证队列,我们研究了另外 50 个肿瘤样本以确定 MSI 状态。

结果

在 184 个肿瘤样本中,MSI-PCR 和 IHC 分析将 161 个肿瘤分类为 MSS/pMMR,23 个肿瘤分类为 MSI-H/dMMR。使用 MSI-NGS 结合 MSIcall,我们在 25 种癌症中以高准确性(98.9%)、特异性(91.3%)和敏感性(100%)预测了 MSI 状态。该方法的 ROC 曲线下面积(AUC)值为 0.9986。此外,我们在另外 50 个样本的验证中获得了 100%的一致性结果。

结论

我们展示了新开发的 MSI-NGS 与 MSIcall 相结合,通过单独对肿瘤样本进行测序,而无需患者匹配的正常对照,即可准确确定 FFPE 肿瘤组织的 MSI 状态。该方法可应用于所有类型的实体瘤,以确定对免疫肿瘤治疗有反应的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验