Suppr超能文献

基于快速双耦合非负张量分解的 EEG 数据组分析。

Group analysis of ongoing EEG data based on fast double-coupled nonnegative tensor decomposition.

机构信息

School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China; Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland.

Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland.

出版信息

J Neurosci Methods. 2020 Jan 15;330:108502. doi: 10.1016/j.jneumeth.2019.108502. Epub 2019 Nov 13.

Abstract

BACKGROUND

Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, which require advanced signal processing techniques for separation and analysis. Existing methods cannot simultaneously consider common and individual characteristics among/within subjects when extracting stimulus-elicited brain activities from ongoing EEG elicited by 512-s long modern tango music.

NEW METHOD

Aiming to discover the commonly music-elicited brain activities among subjects, we provide a comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algorithm. The proposed algorithm with a generalized model is capable of simultaneously decomposing EEG tensors into common and individual components.

RESULTS

With the proposed framework, the brain activities can be effectively extracted and sorted into the clusters of interest. The proposed algorithm based on the generalized model achieved higher fittings and stronger robustness. In addition to the distribution of centro-parietal and occipito-parietal regions with theta and alpha oscillations, the music-elicited brain activities were also located in the frontal region and distributed in the 4∼11 Hz band.

COMPARISON WITH EXISTING METHOD(S): The present study, by providing a solution of how to separate common stimulus-elicited brain activities using coupled tensor decomposition, has shed new light on the processing and analysis of ongoing EEG data in multi-subject level. It can also reveal more links between brain responses and the continuous musical stimulus.

CONCLUSIONS

The proposed framework based on coupled tensor decomposition can be successfully applied to group analysis of ongoing EEG data, as it can be reliably inferred that those brain activities we obtained are associated with musical stimulus.

摘要

背景

正在进行的 EEG 数据记录为刺激诱发的 EEG、自发 EEG 和噪声的混合物,这需要先进的信号处理技术来分离和分析。当从现代探戈音乐诱发的 512 秒长的持续 EEG 中提取刺激诱发的大脑活动时,现有的方法无法同时考虑被试之间/内的共同和个体特征。

新方法

为了从刺激诱发的大脑活动中发现被试之间共同的音乐诱发的大脑活动,我们提供了一个基于快速双耦合非负张量分解(FDC-NTD)算法的综合框架。所提出的算法具有广义模型,能够同时将 EEG 张量分解为共同和个体分量。

结果

使用所提出的框架,可以有效地提取大脑活动并将其分类到感兴趣的聚类中。基于广义模型的所提出的算法实现了更高的拟合度和更强的稳健性。除了具有 theta 和 alpha 振荡的中央顶区和枕顶区分布外,音乐诱发的大脑活动还位于额叶区域,并分布在 4∼11 Hz 频段。

与现有方法的比较

本研究通过提供一种使用耦合张量分解分离共同刺激诱发大脑活动的解决方案,为多被试水平的持续 EEG 数据处理和分析提供了新的思路。它还可以揭示大脑反应与连续音乐刺激之间的更多联系。

结论

基于耦合张量分解的所提出的框架可以成功地应用于持续 EEG 数据的组分析,因为可以可靠地推断我们获得的那些大脑活动与音乐刺激有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验