Suppr超能文献

和 之间的根系结构的共同遗传控制。

Shared Genetic Control of Root System Architecture between and .

机构信息

Department of Agronomy, Iowa State University, Ames, Iowa 50011.

Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, Iowa 50011.

出版信息

Plant Physiol. 2020 Feb;182(2):977-991. doi: 10.1104/pp.19.00752. Epub 2019 Nov 18.

Abstract

Determining the genetic control of root system architecture (RSA) in plants via large-scale genome-wide association study (GWAS) requires high-throughput pipelines for root phenotyping. We developed Core Root Excavation using Compressed-air (CREAMD), a high-throughput pipeline for the cleaning of field-grown roots, and Core Root Feature Extraction (COFE), a semiautomated pipeline for the extraction of RSA traits from images. CREAMD-COFE was applied to diversity panels of maize () and sorghum (), which consisted of 369 and 294 genotypes, respectively. Six RSA-traits were extracted from images collected from >3,300 maize roots and >1,470 sorghum roots. Single nucleotide polymorphism (SNP)-based GWAS identified 87 TAS (trait-associated SNPs) in maize, representing 77 genes and 115 TAS in sorghum. An additional 62 RSA-associated maize genes were identified via expression read depth GWAS. Among the 139 maize RSA-associated genes (or their homologs), 22 (16%) are known to affect RSA in maize or other species. In addition, 26 RSA-associated genes are coregulated with genes previously shown to affect RSA and 51 (37% of RSA-associated genes) are themselves transe-quantitative trait locus for another RSA-associated gene. Finally, the finding that RSA-associated genes from maize and sorghum included seven pairs of syntenic genes demonstrates the conservation of regulation of morphology across taxa.

摘要

通过大规模全基因组关联研究(GWAS)确定植物根系结构(RSA)的遗传控制,需要高通量的根系表型分析流水线。我们开发了 Core Root Excavation using Compressed-air(CREAMD),这是一种用于田间生长的根系清洁的高通量流水线,以及 Core Root Feature Extraction(COFE),这是一种从图像中提取 RSA 特征的半自动流水线。CREAMD-COFE 应用于玉米()和高粱()的多样性面板,分别包含 369 和 294 个基因型。从超过 3300 个玉米根和超过 1470 个高粱根的图像中提取了 6 个 RSA 特征。基于单核苷酸多态性(SNP)的 GWAS 在玉米中鉴定出 87 个 TAS(性状相关 SNP),代表了 77 个基因和 115 个 TAS 在高粱中。通过表达读取深度 GWAS 还鉴定出了另外 62 个与玉米 RSA 相关的基因。在 139 个与玉米 RSA 相关的基因(或其同源物)中,有 22 个(16%)已知会影响玉米或其他物种的 RSA。此外,26 个与 RSA 相关的基因与先前显示会影响 RSA 的基因有共同调节作用,51 个(37%的 RSA 相关基因)本身就是另一个与 RSA 相关的基因的跨定量性状基因座。最后,发现玉米和高粱的 RSA 相关基因包括 7 对同源基因,这表明了形态跨分类群的调控具有保守性。

相似文献

1
Shared Genetic Control of Root System Architecture between and .
Plant Physiol. 2020 Feb;182(2):977-991. doi: 10.1104/pp.19.00752. Epub 2019 Nov 18.
3
Semiautomated Feature Extraction from RGB Images for Sorghum Panicle Architecture GWAS.
Plant Physiol. 2019 Jan;179(1):24-37. doi: 10.1104/pp.18.00974. Epub 2018 Nov 2.
5
Quantitative trait locus mapping reveals regions of the maize genome controlling root system architecture.
Plant Physiol. 2015 Apr;167(4):1487-96. doi: 10.1104/pp.114.251751. Epub 2015 Feb 11.
6
Exploiting natural variation in crown root traits via genome-wide association studies in maize.
BMC Plant Biol. 2021 Jul 23;21(1):346. doi: 10.1186/s12870-021-03127-x.
10
Early exposure to phosphorus starvation induces genetically determined responses in Sorghum bicolor roots.
Theor Appl Genet. 2024 Sep 11;137(10):220. doi: 10.1007/s00122-024-04728-4.

引用本文的文献

3
QTL mapping and candidate gene identification for fodder quality traits in Pearl millet.
BMC Plant Biol. 2025 Mar 31;25(1):404. doi: 10.1186/s12870-025-06381-5.
4
Moisture-responsive root-branching pathways identified in diverse maize breeding germplasm.
Science. 2025 Feb 7;387(6734):666-673. doi: 10.1126/science.ads5999. Epub 2025 Feb 6.
7
Genomic basis determining root system architecture in maize.
Theor Appl Genet. 2024 Apr 12;137(5):102. doi: 10.1007/s00122-024-04606-z.
8
Advancements and Prospects of Genome-Wide Association Studies (GWAS) in Maize.
Int J Mol Sci. 2024 Feb 5;25(3):1918. doi: 10.3390/ijms25031918.
10
Genetic characterization of root architectural traits in barley ( L.) using SNP markers.
Front Plant Sci. 2023 Oct 4;14:1265925. doi: 10.3389/fpls.2023.1265925. eCollection 2023.

本文引用的文献

1
FarmCPUpp: Efficient large-scale genomewide association studies.
Plant Direct. 2018 Apr 10;2(4):e00053. doi: 10.1002/pld3.53. eCollection 2018 Apr.
2
Optimising the identification of causal variants across varying genetic architectures in crops.
Plant Biotechnol J. 2019 May;17(5):893-905. doi: 10.1111/pbi.13023. Epub 2018 Nov 9.
3
Parallel selection on a dormancy gene during domestication of crops from multiple families.
Nat Genet. 2018 Oct;50(10):1435-1441. doi: 10.1038/s41588-018-0229-2. Epub 2018 Sep 24.
4
Rice actin binding protein RMD controls crown root angle in response to external phosphate.
Nat Commun. 2018 Jun 11;9(1):2346. doi: 10.1038/s41467-018-04710-x.
5
Dysregulation of expression correlates with rare-allele burden and fitness loss in maize.
Nature. 2018 Mar 22;555(7697):520-523. doi: 10.1038/nature25966. Epub 2018 Mar 14.
6
Largely unlinked gene sets targeted by selection for domestication syndrome phenotypes in maize and sorghum.
Plant J. 2018 Mar;93(5):843-855. doi: 10.1111/tpj.13806. Epub 2018 Jan 16.
7
Genetic Control of Root System Development in Maize.
Trends Plant Sci. 2018 Jan;23(1):79-88. doi: 10.1016/j.tplants.2017.10.004. Epub 2017 Nov 20.
9
Differentially Regulated Orthologs in Sorghum and the Subgenomes of Maize.
Plant Cell. 2017 Aug;29(8):1938-1951. doi: 10.1105/tpc.17.00354. Epub 2017 Jul 21.
10
The impact of rare and low-frequency genetic variants in common disease.
Genome Biol. 2017 Apr 27;18(1):77. doi: 10.1186/s13059-017-1212-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验