Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599-3290 , United States.
Inorg Chem. 2019 Dec 16;58(24):16510-16517. doi: 10.1021/acs.inorgchem.9b02445. Epub 2019 Nov 22.
Studying the formation of transition metal hydride complexes via proton-coupled electron transfer is important for developing next-generation molecular catalysts for hydrogen evolution. We report herein the study of stepwise photoinduced reduction and protonation of [CoCp(dppe)] (Cp = cyclopentadienyl, dppe = 1,2-bis(diphenylphosphino)ethane) to form the corresponding hydride complex [HCoCp(dppe)]. Reaction intermediates were optically tracked using transient absorption spectroscopy, and a combination of experimental fitting and kinetic simulations was used to determine apparent rate constants for electron transfer and proton transfer with a range of acid sources. A linear free energy relationship is observed between measured apparent proton transfer rate constants and acid strength, but marked differences from previously electrochemically determined protonation rate constants are found. These deviations, which stem from ground-state reactivity present in photochemical experiments, highlight the challenges in comparing mechanistic studies using different techniques.
通过质子耦合电子转移研究过渡金属氢化物配合物的形成对于开发下一代用于氢析出的分子催化剂非常重要。本文报道了通过逐步光诱导还原和质子化[CoCp(dppe)](Cp=环戊二烯基,dppe=1,2-双(二苯基膦)乙烷)形成相应的氢化物配合物[HCoCp(dppe)]的研究。使用瞬态吸收光谱跟踪反应中间体,并用实验拟合和动力学模拟相结合的方法,使用一系列酸源确定电子转移和质子转移的表观速率常数。观察到测量的表观质子转移速率常数与酸强度之间存在线性自由能关系,但与先前电化学确定的质子化速率常数存在明显差异。这些偏差源于光化学实验中的基态反应性,突出了使用不同技术进行机制研究的比较所面临的挑战。