Suppr超能文献

提高基于 Ni(II)的大环配体配合物的光致自旋转变效率。

Improving the Light-Induced Spin Transition Efficiency in Ni(II)-Based Macrocyclic-Ligand Complexes.

机构信息

National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, Ro-400293 Cluj-Napoca, Romania.

Faculty of Physics, "Babeş-Bolyai" University, Mihail Kogalniceanu Street No. 1, Ro-400084 Cluj-Napoca, Romania.

出版信息

Molecules. 2019 Nov 22;24(23):4249. doi: 10.3390/molecules24234249.

Abstract

The structural stability and photoabsorption properties of Ni(II)-based metal-organic complexes with octahedral coordination having different planar ligand ring structures were investigated employing density functional theory (DFT) and its time-dependent extension (TD-DFT) considering the M06 exchange-correlation functional and the Def2-TZVP basis set. The results showed that the molecular composition of different planar cyclic ligand structures had significant influences on the structural stability and photoabsorption properties of metal-organic complexes. Only those planar ligands that contained aromatic rings met the basic criteria (thermal stability, structural reversibility, and appropriate excitation frequency domain) for light-induced excited spin state trapping, but their spin transition efficiencies were very different. While, in all three aromatic cases, the singlet electronic excitations induced charge distribution that could help in the singlet-to-triplet spin transition, and triplet excitations, which could assist in the backward (triplet-to-singlet) spin transition, was found only for one complex.

摘要

采用密度泛函理论(DFT)及其含时相关扩展(TD-DFT),考虑 M06 交换相关泛函和 Def2-TZVP 基组,研究了具有不同平面配体环结构的八面体配位镍(II)基金属有机配合物的结构稳定性和光吸收特性。结果表明,不同平面环状配体结构的分子组成对金属有机配合物的结构稳定性和光吸收性质有显著影响。只有那些含有芳香环的平面配体满足光诱导激发态捕获的基本条件(热稳定性、结构可逆性和适当的激发频率范围),但其自旋转变效率却有很大差异。然而,在所有三种芳香族情况下,单重态电子激发诱导的电荷分布有助于单重态到三重态的自旋跃迁,而三重态激发则有助于反向(三重态到单重态)的自旋跃迁,仅在一个配合物中发现了这种情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baa2/6930591/6e1bcb559bce/molecules-24-04249-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验