Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain.
Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
Ann Clin Transl Neurol. 2019 Dec;6(12):2531-2543. doi: 10.1002/acn3.50947. Epub 2019 Nov 26.
Orthostatic tremor (OT) is an extremely rare, misdiagnosed, and underdiagnosed disorder affecting adults in midlife. There is debate as to whether it is a different condition or a variant of essential tremor (ET), or even, if both conditions coexist. Our objective was to use data mining classification methods, using magnetic resonance imaging (MRI)-derived brain volume and cortical thickness data, to identify morphometric measures that help to discriminate OT patients from those with ET.
MRI-derived brain volume and cortical thickness were obtained from 14 OT patients and 15 age-, sex-, and education-matched ET patients. Feature selection and machine learning methods were subsequently applied.
Four MRI features alone distinguished the two, OT from ET, with 100% diagnostic accuracy. More specifically, left thalamus proper volume (normalized by the total intracranial volume), right superior parietal volume, right superior parietal thickness, and right inferior parietal roughness (i.e., the standard deviation of cortical thickness) were shown to play a key role in OT and ET characterization. Finally, the left caudal anterior cingulate thickness and the left caudal middle frontal roughness allowed us to separate with 100% diagnostic accuracy subgroups of OT patients (primary and those with mild parkinsonian signs).
A data mining approach applied to MRI-derived brain volume and cortical thickness data may differentiate between these two types of tremor with an accuracy of 100%. Our results suggest that OT and ET are distinct conditions.
直立性震颤(OT)是一种极为罕见、易误诊和漏诊的疾病,影响中年成年人。目前仍存在争议,即它是一种不同的疾病还是特发性震颤(ET)的一种变体,甚至是否同时存在这两种疾病。我们的目的是使用数据挖掘分类方法,利用磁共振成像(MRI)衍生的脑容量和皮质厚度数据,确定有助于区分 OT 患者和 ET 患者的形态计量学测量值。
从 14 名 OT 患者和 15 名年龄、性别和教育程度匹配的 ET 患者中获得 MRI 衍生的脑容量和皮质厚度。随后应用特征选择和机器学习方法。
仅使用四个 MRI 特征即可将 OT 与 ET 区分开来,准确率为 100%。更具体地说,左丘脑固有体积(按总颅内体积归一化)、右顶叶上体积、右顶叶上厚度和右顶叶下粗糙度(即皮质厚度的标准差)被证明在 OT 和 ET 特征描述中起着关键作用。最后,左侧前扣带皮质下厚度和左侧中额皮质下粗糙度允许我们以 100%的诊断准确率将 OT 患者(原发性和伴有轻度帕金森样体征的患者)分为亚组。
应用于 MRI 衍生的脑容量和皮质厚度数据的数据挖掘方法可以将这两种震颤以 100%的准确率区分开来。我们的结果表明,OT 和 ET 是不同的疾病。