Purdue University, West Lafayette, IN, USA.
Nature. 2019 Nov;575(7784):607-617. doi: 10.1038/s41586-019-1677-2. Epub 2019 Nov 27.
Guided by brain-like 'spiking' computational frameworks, neuromorphic computing-brain-inspired computing for machine intelligence-promises to realize artificial intelligence while reducing the energy requirements of computing platforms. This interdisciplinary field began with the implementation of silicon circuits for biological neural routines, but has evolved to encompass the hardware implementation of algorithms with spike-based encoding and event-driven representations. Here we provide an overview of the developments in neuromorphic computing for both algorithms and hardware and highlight the fundamentals of learning and hardware frameworks. We discuss the main challenges and the future prospects of neuromorphic computing, with emphasis on algorithm-hardware codesign.
受类脑“尖峰”计算框架的指导,神经形态计算——受大脑启发的机器智能计算——有望在降低计算平台能耗的同时实现人工智能。这一跨学科领域始于对生物神经网络常规的硅基电路实现,但已发展到包括基于尖峰的编码和事件驱动表示的算法的硬件实现。本文我们综述了神经形态计算在算法和硬件方面的发展,并重点介绍了学习和硬件框架的基础。我们讨论了神经形态计算的主要挑战和未来前景,重点强调了算法-硬件协同设计。