Suppr超能文献

吹扫气膜蒸馏法测定水溶液中1,3-二甲基-2-咪唑啉酮的浓度:从实验室规模到工业规模

Concentration of 1,3-dimethyl-2-imidazolidinone in Aqueous Solutions by Sweeping Gas Membrane Distillation: From Bench to Industrial Scale.

作者信息

Abejón Ricardo, Saidani Hafedh, Deratani André, Richard Christophe, Sánchez-Marcano José

机构信息

Institut Européen des Membranes UMR 5635, CNRS, ENSCM, Université de Montpellier, CC 047, Place Eugène Bataillon, 34095 Montpellier, France.

Department of Chemical and Biomolecular Engineering, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain.

出版信息

Membranes (Basel). 2019 Nov 26;9(12):158. doi: 10.3390/membranes9120158.

Abstract

Sweeping gas membrane distillation (SGMD) is a useful option for dehydration of aqueous solvent solutions. This study investigated the technical viability and competitiveness of the use of SGMD to concentrate aqueous solutions of 1,3-dimethyl-2-imidazolidinone (DMI), a dipolar aprotic solvent. The concentration from 30% to 50% of aqueous DMI solutions was attained in a bench installation with Liqui-Cel SuperPhobic hollow-fiber membranes. The selected membranes resulted in low vapor flux (below 0.15 kg/h·m) but were also effective for minimization of DMI losses through the membranes, since these losses were maintained below 1% of the evaporated water flux. This fact implied that more than 99.2% of the DMI fed to the system was recovered in the produced concentrated solution. The influence of temperature and flowrate of the feed and sweep gas streams was analyzed to develop simple empirical models that represented the vapor permeation and DMI losses through the hollow-fiber membranes. The proposed models were successfully applied to the scaling-up of the process with a preliminary multi-objective optimization of the process based on the simultaneous minimization of the total membrane area, the heat requirement and the air consumption. Maximal feed temperature and air flowrate (and the corresponding high operation costs) were optimal conditions, but the excessive membrane area required implied an uncompetitive alternative for direct industrial application.

摘要

吹扫气膜蒸馏(SGMD)是一种用于脱水溶剂水溶液的有效方法。本研究调查了使用SGMD浓缩1,3 - 二甲基 - 2 - 咪唑啉酮(DMI,一种偶极非质子溶剂)水溶液的技术可行性和竞争力。在配备Liqui - Cel超疏水中空纤维膜的实验室装置中,实现了将DMI水溶液从30%浓缩至50%。所选的膜导致蒸汽通量较低(低于0.15 kg/h·m),但对于使DMI透过膜的损失最小化也很有效,因为这些损失保持在蒸发水通量的1%以下。这意味着进料到系统中的DMI超过99.2%在产生的浓缩溶液中得以回收。分析了进料和吹扫气流的温度及流速的影响,以建立简单的经验模型来表示蒸汽透过中空纤维膜的情况以及DMI的损失。所提出的模型成功应用于该过程的放大,基于同时最小化总膜面积、热量需求和空气消耗对该过程进行了初步的多目标优化。最高进料温度和空气流速(以及相应的高运行成本)是最优条件,但所需的过大膜面积意味着对于直接工业应用而言是一种缺乏竞争力的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/116e/6950459/ef18e266d6da/membranes-09-00158-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验