Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.
Semin Arthritis Rheum. 2019 Dec;49(3S):S25-S28. doi: 10.1016/j.semarthrit.2019.09.020.
To prevent chronicity of Rheumatoid Arthritis (RA) by early treatment, detecting inflammatory signs in an early phase is essential. Since Magnetic Resonance Imaging (MRI) of the wrist, hand and foot can detect inflammation before it is clinically detectable, this modality may play an important role in achieving very early diagnoses. By collecting large amounts of MRI data from healthy controls and patients with arthralgia suspicious for progression to RA, patterns can be studied that are most specific for early development of RA. Furthermore, MRI can be used as outcome parameter for randomized placebo-controlled trials on early RA treatment, by detecting subtle changes in image intensities originating from natural progression or treatment effects. Very large amounts of MRI data, however, make manual quantification impractical and the coarse scale used in visual scoring systems (i.e. whole values between 0 and 3) limits its sensitivity to detect changes that are likely to be very subtle in such an early phase. In recent years, advances in artificial intelligence and especially 'deep learning' in interpreting medical images have shown that -in specific areas- a computerized analysis can outperform human observers. Therefore, research has been initiated into applying these artificial intelligence techniques to the quantification of early RA from MRI data. In this paper, an overview is given on the background and history of artificial intelligence, with a special focus on recent developments in 'deep learning', and how these techniques could be applied to detect subtle inflammatory changes in MRI data.
为了通过早期治疗预防类风湿关节炎 (RA) 的慢性化,早期检测炎症迹象至关重要。由于腕关节、手部和足部的磁共振成像 (MRI) 可以在临床上可检测到炎症之前检测到炎症,因此这种方式可能在实现非常早期诊断方面发挥重要作用。通过从健康对照者和怀疑进展为 RA 的关节炎患者中收集大量的 MRI 数据,可以研究出最能特异性地预测 RA 早期发展的模式。此外,通过检测源自自然进展或治疗效果的图像强度的细微变化,MRI 可用于早期 RA 治疗的随机安慰剂对照试验的结果参数。然而,非常大量的 MRI 数据使得手动量化变得不切实际,并且视觉评分系统中使用的粗略尺度(即 0 到 3 之间的整数值)限制了其检测在如此早期阶段可能非常细微的变化的敏感性。近年来,人工智能的进步,特别是医学图像解释中的“深度学习”,表明在特定领域,计算机分析可以优于人类观察者。因此,已经开始研究将这些人工智能技术应用于从 MRI 数据中定量检测早期 RA。本文概述了人工智能的背景和历史,特别关注“深度学习”的最新进展,以及这些技术如何应用于检测 MRI 数据中的细微炎症变化。