Suppr超能文献

调节网络模型。

Moderated Network Models.

机构信息

Psychological Methods Group, University of Amsterdam.

出版信息

Multivariate Behav Res. 2021 Mar-Apr;56(2):256-287. doi: 10.1080/00273171.2019.1677207. Epub 2019 Nov 29.

Abstract

Pairwise network models such as the Gaussian Graphical Model (GGM) are a powerful and intuitive way to analyze dependencies in multivariate data. A key assumption of the GGM is that each pairwise interaction is independent of the values of all other variables. However, in psychological research, this is often implausible. In this article, we extend the GGM by allowing each pairwise interaction between two variables to be moderated by (a subset of) all other variables in the model, and thereby introduce a Moderated Network Model (MNM). We show how to construct MNMs and propose an -regularized nodewise regression approach to estimate them. We provide performance results in a simulation study and show that MNMs outperform the split-sample based methods Network Comparison Test (NCT) and Fused Graphical Lasso (FGL) in detecting moderation effects. Finally, we provide a fully reproducible tutorial on how to estimate MNMs with the R-package and discuss possible issues with model misspecification.

摘要

成对网络模型,如高斯图形模型 (GGM),是分析多元数据中依赖关系的强大而直观的方法。GGM 的一个关键假设是,每个成对交互独立于所有其他变量的值。然而,在心理学研究中,这通常是不合理的。在本文中,我们通过允许模型中两个变量之间的每个成对交互由(模型中的)所有其他变量的子集来调节,从而引入了一个调节网络模型 (MNM)。我们展示了如何构建 MNM,并提出了一种基于正则化节点回归的方法来估计它们。我们在模拟研究中提供了性能结果,并表明 MNM 在检测调节效应方面优于基于分割样本的方法网络比较测试 (NCT) 和融合图形套索 (FGL)。最后,我们提供了一个使用 R 包 的可重现教程,说明如何估计 MNM,并讨论了模型误设的可能问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验