Silvestri Daniele, Wacławek Stanisław, K Ramakrishnan Rohith, Venkateshaiah Abhilash, Krawczyk Kamil, Padil Vinod V T, Sobel Bartłomiej, Černík Miroslav
Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic.
Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland.
Polymers (Basel). 2019 Nov 27;11(12):1948. doi: 10.3390/polym11121948.
Raising health and environmental concerns over the nanoparticles synthesized from hazardous chemicals have urged researchers to focus on safer, environmentally friendlier and cheaper alternatives as well as prompted the development of green synthesis. Apart from many advantages, green synthesis is often not selective enough (among other issues) to create shape-specific nanoparticle structures. Herein, we have used a biopolymer conjugate and Pd and Pt precursors to prepare sustainable bimetallic nanoparticles with various morphology types. The nanoparticles were synthesized by a novel green approach using a bio-conjugate of chitosan and polyhydroxybutyrate (Cs-PHB). The bio-conjugate plays the simultaneous roles of a reducing and a capping agent, which was confirmed by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and energy dispersive X-ray spectrometry (EDS) analysis, proving the presence of a Cs-PHB layer on the surface of the prepared nanoparticles. The EDS profile also revealed the elemental structure of these nanoparticles and confirmed the formation of a Pd/Pt alloy. TEM morphological analysis showed the formation of star-like, octahedron or decahedron Pd/Pt nanoparticles, depending on the synthesis conditions. The bimetallic Pd/Pt nanoparticles synthesized with various Pd/Pt molar ratios were successfully applied for the catalytic reduction of 4-nitrophenol to 4-aminophenol by borohydride. The calculated κc values (ratio of to the concentration of the catalyst) revealed that the decahedron nanoparticles (size of 15 ± 4 nm), synthesized at the molar ratio of 2:1 (Pd/Pt), temperature of 130 °C, 10 g/L of Cs-PHB conjugate and time of 30 min, exhibited excellent catalytic activity compared to other bimetallic nanoparticles reported in the literature.
对由有害化学物质合成的纳米颗粒引发的健康和环境问题,促使研究人员关注更安全、环境更友好且成本更低的替代方案,并推动了绿色合成的发展。除了诸多优点外,绿色合成往往(在其他问题中)选择性不足,难以创建特定形状的纳米颗粒结构。在此,我们使用生物聚合物共轭物以及钯和铂前驱体来制备具有多种形态类型的可持续双金属纳米颗粒。这些纳米颗粒通过一种新颖的绿色方法合成,该方法使用壳聚糖和聚羟基丁酸酯(Cs-PHB)的生物共轭物。通过衰减全反射傅里叶变换红外光谱(ATR-FTIR)和能量色散X射线光谱(EDS)分析证实,这种生物共轭物同时起到还原剂和封端剂的作用,证明在制备的纳米颗粒表面存在Cs-PHB层。EDS图谱还揭示了这些纳米颗粒的元素结构,并证实形成了钯/铂合金。透射电子显微镜(TEM)形态分析表明,根据合成条件的不同,会形成星状、八面体或十面体的钯/铂纳米颗粒。以不同钯/铂摩尔比合成的双金属钯/铂纳米颗粒成功应用于硼氢化物将4-硝基苯酚催化还原为4-氨基苯酚的反应。计算得到的κc值(与催化剂浓度的比值)表明,在2:1(钯/铂)的摩尔比、130°C的温度、10 g/L的Cs-PHB共轭物以及30分钟的反应时间下合成的十面体纳米颗粒(尺寸为(15 \pm 4) nm),与文献中报道的其他双金属纳米颗粒相比,表现出优异的催化活性。