Suppr超能文献

认知智能辅助的雾-云架构用于广泛性焦虑障碍(GAD)预测。

Cognitive Intelligence Assisted Fog-Cloud Architecture for Generalized Anxiety Disorder (GAD) Prediction.

机构信息

Lovely Professional University, Phagwara, 144411, Punjab, India.

出版信息

J Med Syst. 2019 Nov 29;44(1):7. doi: 10.1007/s10916-019-1495-y.

Abstract

Generalized Anxiety Disorder (GAD) is a psychological disorder caused by high stress from daily life activities. It causes severe health issues, such as sore muscles, low concentration, fatigue, and sleep deprivation. The less availability of predictive solutions specifically for individuals suffering from GAD can become an imperative reason for health and psychological adversity. The proposed solution aims to monitor health, behavioral and environmental parameters of the individual to predict health adversity caused by GAD. Initially, Weighted-Naïve Bayes (W-NB) classifier is utilized to predict irregular health events by classifying the captured data at the fog layer. The proposed two-phased decision-making process helps to optimize the distribution of required medical services by determining the scale of vulnerability. Furthermore, the utility of the framework is increased by calculating health vulnerability index using Adaptive Neuro-Fuzzy Inference System-Genetic Algorithm (ANFIS-GA) on the cloud. The presented work addresses the concerns in terms of efficient monitoring of anomalies followed by time sensitive two-phased alert generation procedure. To approve the performance of irregular event identification and health severity prediction, the framework has been conveyed in a living room for 30 days in which almost 15 individuals by the age of 68 to 78 years have been continuously monitored. The calculated outcomes represent the monitoring efficiency of the proposed framework over the policies of manual monitoring.

摘要

广泛性焦虑障碍(GAD)是一种由日常生活活动中的高压力引起的心理障碍。它会导致严重的健康问题,如肌肉疼痛、注意力不集中、疲劳和睡眠不足。针对 GAD 患者的预测解决方案较少,这可能成为健康和心理逆境的重要原因。拟议的解决方案旨在监测个体的健康、行为和环境参数,以预测由 GAD 引起的健康逆境。最初,在雾层使用加权朴素贝叶斯(W-NB)分类器来通过对捕获的数据进行分类来预测不规则的健康事件。所提出的两阶段决策过程有助于通过确定脆弱性的规模来优化所需医疗服务的分配。此外,通过在云端使用自适应神经模糊推理系统-遗传算法(ANFIS-GA)计算健康脆弱性指数,提高了框架的实用性。所提出的工作解决了高效监测异常的问题,然后是对时间敏感的两阶段警报生成过程。为了验证不规则事件识别和健康严重程度预测的性能,该框架在一个客厅中进行了为期 30 天的测试,其中有近 15 名年龄在 68 岁至 78 岁之间的人持续受到监测。计算结果代表了所提出的框架在人工监测策略下的监测效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验