Suppr超能文献

氧化还原酶 1(OXR1)缺失与常染色体隐性遗传性小脑萎缩伴溶酶体功能障碍的神经退行性疾病相关。

Loss of Oxidation Resistance 1, OXR1, Is Associated with an Autosomal-Recessive Neurological Disease with Cerebellar Atrophy and Lysosomal Dysfunction.

机构信息

Program in Developmental Biology, Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.

Centre Hospitalier Universitaire Saint-Justine Research Center, CHU Sainte-Justine, Montreal, QC H3T 1J4, Canada.

出版信息

Am J Hum Genet. 2019 Dec 5;105(6):1237-1253. doi: 10.1016/j.ajhg.2019.11.002. Epub 2019 Nov 27.

Abstract

We report an early-onset autosomal-recessive neurological disease with cerebellar atrophy and lysosomal dysfunction. We identified bi-allelic loss-of-function (LoF) variants in Oxidative Resistance 1 (OXR1) in five individuals from three families; these individuals presented with a history of severe global developmental delay, current intellectual disability, language delay, cerebellar atrophy, and seizures. While OXR1 is known to play a role in oxidative stress resistance, its molecular functions are not well established. OXR1 contains three conserved domains: LysM, GRAM, and TLDc. The gene encodes at least six transcripts, including some that only consist of the C-terminal TLDc domain. We utilized Drosophila to assess the phenotypes associated with loss of mustard (mtd), the fly homolog of OXR1. Strong LoF mutants exhibit late pupal lethality or pupal eclosion defects. Interestingly, although mtd encodes 26 transcripts, severe LoF and null mutations can be rescued by a single short human OXR1 cDNA that only contains the TLDc domain. Similar rescue is observed with the TLDc domain of NCOA7, another human homolog of mtd. Loss of mtd in neurons leads to massive cell loss, early death, and an accumulation of aberrant lysosomal structures, similar to what we observe in fibroblasts of affected individuals. Our data indicate that mtd and OXR1 are required for proper lysosomal function; this is consistent with observations that NCOA7 is required for lysosomal acidification.

摘要

我们报告了一种早发性常染色体隐性神经疾病,伴有小脑萎缩和溶酶体功能障碍。我们在三个家族的五名个体中发现了氧化抵抗 1(OXR1)的双等位基因功能丧失(LoF)变异;这些个体有严重的全面发育迟缓史、目前的智力残疾、语言发育迟缓、小脑萎缩和癫痫发作。虽然 OXR1 已知在抵抗氧化应激方面发挥作用,但它的分子功能尚未得到很好的确定。OXR1 包含三个保守结构域:LysM、GRAM 和 TLDc。该基因编码至少六种转录本,包括一些仅由 C 末端 TLDc 结构域组成的转录本。我们利用果蝇来评估与氧化抵抗 1 的果蝇同源物 mustard(mtd)缺失相关的表型。强 LoF 突变体表现出晚期蛹期致死或蛹期出芽缺陷。有趣的是,尽管 mtd 编码 26 种转录本,但严重的 LoF 和缺失突变可以通过仅包含 TLDc 结构域的单个短的人类 OXR1 cDNA 来挽救。另一种 mtd 的人类同源物 NCOA7 的 TLDc 结构域也观察到类似的挽救。神经元中 mtd 的缺失导致大量细胞丢失、早期死亡和异常溶酶体结构的积累,这与我们在受影响个体的成纤维细胞中观察到的情况相似。我们的数据表明,mtd 和 OXR1 是溶酶体功能所必需的;这与 NCOA7 是溶酶体酸化所必需的观察结果一致。

相似文献

4
The evolutionary conserved TLDc domain defines a new class of (H)V-ATPase interacting proteins.
Sci Rep. 2021 Nov 22;11(1):22654. doi: 10.1038/s41598-021-01809-y.
5
Human V-ATPase function is positively and negatively regulated by TLDc proteins.
Structure. 2024 Jul 11;32(7):989-1000.e6. doi: 10.1016/j.str.2024.03.009. Epub 2024 Apr 8.
6
OXR1 maintains the retromer to delay brain aging under dietary restriction.
Nat Commun. 2024 Jan 11;15(1):467. doi: 10.1038/s41467-023-44343-3.
7
Crystal structure of the TLDc domain of human NCOA7-AS.
Acta Crystallogr F Struct Biol Commun. 2021 Aug 1;77(Pt 8):230-237. doi: 10.1107/S2053230X21006853. Epub 2021 Jul 28.
10
The OXR domain defines a conserved family of eukaryotic oxidation resistance proteins.
BMC Cell Biol. 2007 Mar 28;8:13. doi: 10.1186/1471-2121-8-13.

引用本文的文献

1
Oxr1 and Ncoa7 regulate V-ATPase to achieve optimal pH for glycosylation within the Golgi apparatus and trans-Golgi network.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2505975122. doi: 10.1073/pnas.2505975122. Epub 2025 May 30.
3
Knockout of the V-ATPase interacting protein Tldc2 in B-type kidney intercalated cells impairs urine alkalinization.
Am J Physiol Renal Physiol. 2025 Jun 1;328(6):F890-F906. doi: 10.1152/ajprenal.00363.2024. Epub 2025 May 13.
5
Lysosomal dysfunction and inflammatory sterol metabolism in pulmonary arterial hypertension.
Science. 2025 Jan 24;387(6732):eadn7277. doi: 10.1126/science.adn7277.
6
TBC1D24 interacts with the v-ATPase and regulates intraorganellar pH in neurons.
iScience. 2024 Dec 1;28(1):111515. doi: 10.1016/j.isci.2024.111515. eCollection 2025 Jan 17.
7
V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities.
Cells. 2024 Aug 28;13(17):1441. doi: 10.3390/cells13171441.

本文引用的文献

1
Loss of proteins associated with amyotrophic lateral sclerosis affects lysosomal acidification via different routes.
Autophagy. 2019 Aug;15(8):1467-1469. doi: 10.1080/15548627.2019.1609863. Epub 2019 Apr 28.
2
Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification.
Nat Cell Biol. 2019 Mar;21(3):384-396. doi: 10.1038/s41556-019-0281-x. Epub 2019 Feb 25.
3
VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway.
Autophagy. 2019 Jul;15(7):1214-1233. doi: 10.1080/15548627.2019.1580103. Epub 2019 Feb 20.
4
Novel fibronectin mutations and expansion of the phenotype in spondylometaphyseal dysplasia with "corner fractures".
Bone. 2019 Apr;121:163-171. doi: 10.1016/j.bone.2018.12.020. Epub 2018 Dec 30.
5
Sarm1 induction and accompanying inflammatory response mediates age-dependent susceptibility to rotenone-induced neurotoxicity.
Cell Death Discov. 2018 Dec 11;4:114. doi: 10.1038/s41420-018-0119-5. eCollection 2018.
6
The interferon-inducible isoform of NCOA7 inhibits endosome-mediated viral entry.
Nat Microbiol. 2018 Dec;3(12):1369-1376. doi: 10.1038/s41564-018-0273-9. Epub 2018 Nov 26.
7
InterPro in 2019: improving coverage, classification and access to protein sequence annotations.
Nucleic Acids Res. 2019 Jan 8;47(D1):D351-D360. doi: 10.1093/nar/gky1100.
8
CADD: predicting the deleteriousness of variants throughout the human genome.
Nucleic Acids Res. 2019 Jan 8;47(D1):D886-D894. doi: 10.1093/nar/gky1016.
9
FlyBase 2.0: the next generation.
Nucleic Acids Res. 2019 Jan 8;47(D1):D759-D765. doi: 10.1093/nar/gky1003.
10
Autophagy as a promoter of longevity: insights from model organisms.
Nat Rev Mol Cell Biol. 2018 Sep;19(9):579-593. doi: 10.1038/s41580-018-0033-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验