Suppr超能文献

转录组驱动的网络推断揭示了前馈环及其在大豆光周期开花中的作用。

Transcriptome-Enabled Network Inference Revealed the Feed-Forward Loop and Its Roles in Photoperiodic Flowering of Soybean.

作者信息

Wu Faqiang, Kang Xiaohan, Wang Minglei, Haider Waseem, Price William B, Hajek Bruce, Hanzawa Yoshie

机构信息

Department of Biology, California State University, Northridge, CA, United States.

Department of Electrical Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States.

出版信息

Front Plant Sci. 2019 Nov 8;10:1221. doi: 10.3389/fpls.2019.01221. eCollection 2019.

Abstract

Photoperiodic flowering, a plant response to seasonal photoperiod changes in the control of reproductive transition, is an important agronomic trait that has been a central target of crop domestication and modern breeding programs. However, our understanding about the molecular mechanisms of photoperiodic flowering regulation in crop species is lagging behind. To better understand the regulatory gene networks controlling photoperiodic flowering of soybeans, we elucidated global gene expression patterns under different photoperiod regimes using the near isogenic lines (NILs) of maturity loci ( loci). Transcriptome signatures identified the unique roles of the loci in photoperiodic flowering and a set of genes controlled by these loci. To elucidate the regulatory gene networks underlying photoperiodic flowering regulation, we developed the network inference algorithmic package CausNet that integrates sparse linear regression and Granger causality heuristics, with Gaussian approximation of bootstrapping to provide reliability scores for predicted regulatory interactions. Using the transcriptome data, CausNet inferred regulatory interactions among soybean flowering genes. Published reports in the literature provided empirical verification for several of CausNet's inferred regulatory interactions. We further confirmed the inferred regulatory roles of the flowering suppressors and using RNAi transgenic soybean plants. Combinations of the alleles of and the major maturity locus demonstrated positive interaction between these genes, leading to enhanced suppression of flowering transition. Our work provides novel insights and testable hypotheses in the complex molecular mechanisms of photoperiodic flowering control in soybean and lays a framework for prediction of biological networks controlling important agronomic traits in crops.

摘要

光周期开花是植物在生殖转换控制中对季节性光周期变化的一种反应,是一个重要的农艺性状,一直是作物驯化和现代育种计划的核心目标。然而,我们对作物物种光周期开花调控分子机制的理解仍滞后。为了更好地理解控制大豆光周期开花的调控基因网络,我们利用成熟位点的近等基因系(NILs)阐明了不同光周期条件下的全基因组表达模式。转录组特征确定了这些位点在光周期开花中的独特作用以及由这些位点控制的一组基因。为了阐明光周期开花调控背后的调控基因网络,我们开发了网络推理算法包CausNet,该算法结合了稀疏线性回归和格兰杰因果启发法,并通过自展法的高斯近似为预测的调控相互作用提供可靠性分数。利用转录组数据,CausNet推断了大豆开花基因之间的调控相互作用。文献中的已发表报告为CausNet推断的一些调控相互作用提供了实证验证。我们进一步利用RNAi转基因大豆植株证实了开花抑制因子和的推断调控作用。和主要成熟位点等位基因的组合证明了这些基因之间的正相互作用,导致对开花转换的抑制增强。我们的工作为大豆光周期开花控制的复杂分子机制提供了新的见解和可检验的假设,并为预测控制作物重要农艺性状的生物网络奠定了框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f59b/6856076/cf95a5d4ffce/fpls-10-01221-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验