Key Laboratory of Materials Design and Preparation Technology of Hunan Province, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
Phys Chem Chem Phys. 2019 Dec 11;21(48):26358-26367. doi: 10.1039/c9cp05329h.
Herein, we implement first-principles calculations to design Li7P3S11-xOx at an atomic scale, aiming to obtain stable Li7P3S11-xOx-type solid electrolyte materials with good Li+ conductivity. After searching for chemical potentials, Li2O2 is expected to be the potential raw material, and it can afford the most favorable growth environment for the synthesis of Li7P3S11-xOx (x = 0.25, 0.50, 0.75 and 1). Among these compounds, it is found that Li7P3S10.25O0.75 exhibits the most desirable Li+ conductivity of 109 mS cm-1 at 300 K, which is far higher than that of Li7P3S11 (50 mS cm-1 at 300 K). By structural analysis, it is demonstrated that the Li diffusion pathway in Li7P3S10.25O0.75 is significantly broadened relative to that in Li7P3S11 (71.38 Å3vs. 69.48 Å3), which breaks the bottleneck during Li diffusion. Moreover, the resistance of Li ion diffusion in Li7P3S10.25O0.75 decreases due to the balance of interactions between Li and its neighbouring atoms at the transition state, which induces a much lesser energy barrier of Li7P3S10.25O0.75 than that of Li7P3S11 (0.20 eV vs. 0.31 eV). Moreover, introducing Li vacancies is unlikely to alter the essence of the inherent superionic conductivity of Li7P3S10.25O0.75. Furthermore, Li7P3S10.25O0.75 can maintain good thermal stability and similar electrochemical stability to Li7P3S11. This study successfully clarifies the role of oxygen in enhancing the Li+ conductivity of Li7P3S11-xOx. Moreover, it affords a new strategy to design other solid-state electrolytes with good Li+ conductivity.
在此,我们通过第一性原理计算从原子尺度设计 Li7P3S11-xOx,旨在获得具有良好 Li+导电性的稳定 Li7P3S11-xOx 型固体电解质材料。在寻找化学势后,Li2O2 有望成为潜在的原材料,它可以为 Li7P3S11-xOx(x = 0.25、0.50、0.75 和 1)的合成提供最有利的生长环境。在这些化合物中,我们发现 Li7P3S10.25O0.75 在 300 K 时表现出最理想的 Li+电导率 109 mS cm-1,远高于 Li7P3S11(300 K 时 50 mS cm-1)。通过结构分析,证明了 Li7P3S10.25O0.75 中的 Li 扩散途径明显比 Li7P3S11 中的 Li 扩散途径更宽(71.38 Å3vs. 69.48 Å3),从而打破了 Li 扩散过程中的瓶颈。此外,由于过渡态时 Li 与其相邻原子之间相互作用的平衡,Li7P3S10.25O0.75 中 Li 离子扩散的阻力减小,这导致 Li7P3S10.25O0.75 的能量势垒比 Li7P3S11 小得多(0.20 eV vs. 0.31 eV)。此外,引入 Li 空位不太可能改变 Li7P3S10.25O0.75 固有超离子导电性的本质。此外,Li7P3S10.25O0.75 可以保持与 Li7P3S11 相似的热稳定性和电化学稳定性。本研究成功阐明了氧在提高 Li7P3S11-xOx 中 Li+电导率方面的作用。此外,它为设计具有良好 Li+导电性的其他固态电解质提供了新策略。