Suppr超能文献

光引导的表面等离子体泡通过原位沉积的等离子体纳米粒子加热实现接触线去钉扎的运动。

Light-Guided Surface Plasmonic Bubble Movement via Contact Line De-Pinning by In-Situ Deposited Plasmonic Nanoparticle Heating.

机构信息

Department of Aerospace and Mechanical Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States.

Department of Physics , Colorado Mesa University , Grand Junction , Colorado 81501 , United States.

出版信息

ACS Appl Mater Interfaces. 2019 Dec 26;11(51):48525-48532. doi: 10.1021/acsami.9b16067. Epub 2019 Dec 10.

Abstract

Precise spatiotemporal control of surface bubble movement can benefit a wide range of applications like high-throughput drug screening, combinatorial material development, microfluidic logic, colloidal and molecular assembly, and so forth. In this work, we demonstrate that surface bubbles on a solid surface are directed by a laser to move at high speeds (>1.8 mm/s), and we elucidate the mechanism to be the depinning of the three-phase contact line (TPCL) by rapid plasmonic heating of nanoparticles (NPs) deposited in situ during bubble movement. On the basis of our observations, we deduce a stick-slip mechanism based on asymmetric fore-aft plasmonic heating: local evaporation at the front TPCL due to plasmonic heating depins and extends the front TPCL, followed by the advancement of the trailing TPCL to resume a spherical bubble shape to minimize surface energy. The continuous TPCL drying during bubble movement also enables well-defined contact line deposition of NP clusters along the moving path. Our finding is beneficial to various microfluidics and pattern writing applications.

摘要

精确的表面气泡运动时空控制可以有益于广泛的应用,如高通量药物筛选、组合材料开发、微流控逻辑、胶体和分子组装等。在这项工作中,我们证明了激光可以引导固体表面上的表面气泡以高速(>1.8mm/s)移动,并且我们阐明了通过在气泡运动过程中就地沉积的纳米颗粒(NPs)的快速等离子体加热来解吸三相接触线(TPCL)的机制。基于我们的观察,我们推导出了一种基于不对称前后等离子体加热的粘滑机制:由于等离子体加热而在前 TPCL 处发生局部蒸发,从而解吸并扩展前 TPCL,然后后 TPCL 向前推进以恢复球形气泡形状,从而最小化表面能。在气泡运动过程中,TPCL 的连续干燥也可以实现沿着运动路径的 NP 簇的明确定义的接触线沉积。我们的发现有益于各种微流控和图案书写应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验