Carvalho Bruno R, Wang Yuanxi, Fujisawa Kazunori, Zhang Tianyi, Kahn Ethan, Bilgin Ismail, Ajayan Pulickel M, de Paula Ana M, Pimenta Marcos A, Kar Swastik, Crespi Vincent H, Terrones Mauricio, Malard Leandro M
Departamento de Física , Universidade Federal do Rio Grande do Norte , Natal , Rio Grande do Norte 59078-970 , Brazil.
Department of Physics , Northeastern University , Boston , Massachusetts 02115 , United States.
Nano Lett. 2020 Jan 8;20(1):284-291. doi: 10.1021/acs.nanolett.9b03795. Epub 2019 Dec 11.
One-dimensional defects in two-dimensional (2D) materials can be particularly damaging because they directly impede the transport of charge, spin, or heat and can introduce a metallic character into otherwise semiconducting systems. Current characterization techniques suffer from low throughput and a destructive nature or limitations in their unambiguous sensitivity at the nanoscale. Here we demonstrate that dark-field second harmonic generation (SHG) microscopy can rapidly, efficiently, and nondestructively probe grain boundaries and edges in monolayer dichalcogenides (i.e., MoSe, MoS, and WS). Dark-field SHG efficiently separates the spatial components of the emitted light and exploits interference effects from crystal domains of different orientations to localize grain boundaries and edges as very bright 1D patterns through a Čerenkov-type SHG emission. The frequency dependence of this emission in MoSe monolayers is explained in terms of plasmon-enhanced SHG related to the defect's metallic character. This new technique for nanometer-scale imaging of the grain structure, domain orientation and localized 1D plasmons in 2D different semiconductors, thus enables more rapid progress toward both applications and fundamental materials discoveries.
二维(2D)材料中的一维缺陷可能具有特别大的破坏性,因为它们会直接阻碍电荷、自旋或热量的传输,并可能在原本为半导体的系统中引入金属特性。当前的表征技术存在通量低、具有破坏性或在纳米尺度上的明确灵敏度有限等问题。在此,我们证明暗场二次谐波产生(SHG)显微镜可以快速、高效且无损地探测单层二硫属化物(即MoSe、MoS和WS)中的晶界和边缘。暗场SHG能有效分离发射光的空间成分,并利用来自不同取向晶体畴的干涉效应,通过切伦科夫型SHG发射将晶界和边缘定位为非常明亮的一维图案。MoSe单层中这种发射的频率依赖性是根据与缺陷金属特性相关的等离子体增强SHG来解释的。这种用于二维不同半导体中晶粒结构、畴取向和局域一维等离子体纳米尺度成像的新技术,从而能够在应用和基础材料发现两方面取得更快进展。