Department of Radiation Oncology, Stanford University, Palo Alto, CA 94306, USA.
Pac Symp Biocomput. 2020;25:139-148.
Computed tomographic (CT) is a fundamental imaging modality to generate cross-sectional views of internal anatomy in a living subject or interrogate material composition of an object, and it has been routinely used in clinical applications and nondestructive testing. In a standard CT image, pixels having the same Hounsfield Units (HU) can correspond to different materials, and it is therefore challenging to differentiate and quantify materials. Dual-energy CT (DECT) is desirable to differentiate multiple materials, but the costly DECT scanners are not widely available as single-energy CT (SECT) scanners. Recent advancement in deep learning provides an enabling tool to map images between different modalities with incorporated prior knowledge. Here we develop a deep learning approach to perform DECT imaging by using the standard SECT data. The end point of the approach is a model capable of providing the high-energy CT image for a given input low-energy CT image. The feasibility of the deep learning-based DECT imaging method using a SECT data is demonstrated using contrast-enhanced DECT images and evaluated using clinical relevant indexes. This work opens new opportunities for numerous DECT clinical applications with a standard SECT data and may enable significantly simplified hardware design, scanning dose and image cost reduction for future DECT systems.
计算机断层扫描(CT)是一种基本的成像方式,可生成活体内部解剖结构的横截面视图或探测物体的材料组成,已广泛应用于临床应用和无损检测中。在标准 CT 图像中,具有相同亨氏单位(HU)的像素可能对应于不同的材料,因此难以区分和量化材料。双能 CT(DECT)可用于区分多种材料,但昂贵的 DECT 扫描仪不像单能 CT(SECT)扫描仪那样广泛可用。深度学习的最新进展为在不同模式之间映射图像提供了一种可行的方法,同时也可以整合先验知识。在这里,我们开发了一种使用标准 SECT 数据进行 DECT 成像的深度学习方法。该方法的最终目标是建立一个能够为给定的低能 CT 图像提供高能 CT 图像的模型。我们使用对比增强的 DECT 图像来验证基于深度学习的 SECT 数据 DECT 成像方法的可行性,并使用临床相关指标进行评估。这项工作为使用标准 SECT 数据进行众多 DECT 临床应用开辟了新的机会,并可能为未来的 DECT 系统显著简化硬件设计、扫描剂量和图像成本。