Physics Department, University of Gothenburg, 412 96 Gothenburg, Sweden.
NanOsc AB, Electrum 229, 164 40 Kista, Sweden.
Sci Adv. 2019 Sep 27;5(9):eaax8467. doi: 10.1126/sciadv.aax8467. eCollection 2019 Sep.
Spin-orbit torque (SOT) can drive sustained spin wave (SW) auto-oscillations in a class of emerging microwave devices known as spin Hall nano-oscillators (SHNOs), which have highly nonlinear properties governing robust mutual synchronization at frequencies directly amenable to high-speed neuromorphic computing. However, all demonstrations have relied on localized SW modes interacting through dipolar coupling and/or direct exchange. As nanomagnonics requires propagating SWs for data transfer and additional computational functionality can be achieved using SW interference, SOT-driven propagating SWs would be highly advantageous. Here, we demonstrate how perpendicular magnetic anisotropy can raise the frequency of SOT-driven auto-oscillations in magnetic nanoconstrictions well above the SW gap, resulting in the efficient generation of field and current tunable propagating SWs. Our demonstration greatly extends the functionality and design freedom of SHNOs, enabling long-range SOT-driven SW propagation for nanomagnonics, SW logic, and neuromorphic computing, directly compatible with CMOS technology.
自旋轨道扭矩(SOT)可以在一类新兴的微波器件中驱动持续的自旋波(SW)自激振荡,这类器件被称为自旋霍尔纳米振荡器(SHNO),它们具有高度非线性的特性,能够在直接适用于高速神经形态计算的频率下实现稳健的互同步。然而,所有的演示都依赖于通过偶极子耦合相互作用的局域 SW 模式,或者直接交换。由于纳磁振子需要传播的 SW 进行数据传输,并且可以使用 SW 干涉来实现额外的计算功能,因此 SOT 驱动的传播 SW 将具有很大的优势。在这里,我们展示了垂直各向异性如何使磁性纳米狭缝中 SOT 驱动的自激振荡的频率大大高于 SW 间隙,从而有效地产生场和电流可调的传播 SW。我们的演示大大扩展了 SHNO 的功能和设计自由度,使纳磁振子、SW 逻辑和神经形态计算中的长距离 SOT 驱动 SW 传播成为可能,与 CMOS 技术直接兼容。