Suppr超能文献

癌症手术中术中分子成像的临床试验综述。

Review of clinical trials in intraoperative molecular imaging during cancer surgery.

机构信息

University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States.

University of Münster, Münster, Germany.

出版信息

J Biomed Opt. 2019 Dec;24(12):1-8. doi: 10.1117/1.JBO.24.12.120901.

Abstract

Most solid cancers are treated by surgical resections to reduce the burden of disease. Surgeons often face the challenge of detecting small areas of residual neoplasm after resection or finding small primary tumors for the initial resection. Intraoperative molecular imaging (IMI) is an emerging technology with the potential to dramatically improve cancer surgery operations by allowing surgeons to better visualize areas of neoplasm using fluorescence imaging. Over the last two years, two molecular optical contrast agents received U.S. Food and Drug Administration approval, and several more drugs are now on the horizon. Thus a conference was organized at the University of Pennsylvania to bring together oncologic surgeons from different specialties to discuss the current clinical status of IMI trials with a specific focus on phase 2 and phase 3 studies. In addition, phase 1 and experimental trials were also discussed briefly, to highlight other novel techniques. Our review summarizes the discussions from the conference and delves into the types of cancers discussed, different contrast agents in human trials, and the clinical value being studied.

摘要

大多数实体瘤通过手术切除来减轻疾病负担。外科医生经常面临切除后检测残留肿瘤小区域或为初始切除找到小原发性肿瘤的挑战。术中分子成像(IMI)是一种新兴技术,具有通过使用荧光成像使外科医生更好地可视化肿瘤区域的潜力,从而有可能极大地改善癌症手术操作。在过去的两年中,两种分子光学对比剂获得了美国食品和药物管理局的批准,现在又有几种药物即将面世。因此,宾夕法尼亚大学组织了一次会议,将来自不同专业的肿瘤外科医生聚集在一起,讨论 IMI 试验的当前临床状况,特别关注 2 期和 3 期研究。此外,还简要讨论了 1 期和实验性试验,以突出其他新颖技术。我们的综述总结了会议的讨论内容,并深入探讨了所讨论的癌症类型、人体试验中的不同对比剂以及正在研究的临床价值。

相似文献

1
Review of clinical trials in intraoperative molecular imaging during cancer surgery.
J Biomed Opt. 2019 Dec;24(12):1-8. doi: 10.1117/1.JBO.24.12.120901.
2
Intraoperative molecular imaging clinical trials: a review of 2020 conference proceedings.
J Biomed Opt. 2021 May;26(5). doi: 10.1117/1.JBO.26.5.050901.
3
Precision Surgery Guided by Intraoperative Molecular Imaging.
J Nucl Med. 2022 Nov;63(11):1620-1627. doi: 10.2967/jnumed.121.263409. Epub 2022 Aug 11.
4
Real-time fluorescence imaging in intraoperative decision making for cancer surgery.
Lancet Oncol. 2021 May;22(5):e186-e195. doi: 10.1016/S1470-2045(20)30600-8. Epub 2021 Mar 23.
5
Latest developments in molecular tracers for fluorescence image-guided cancer surgery.
Lancet Oncol. 2019 Jul;20(7):e354-e367. doi: 10.1016/S1470-2045(19)30317-1.
6
Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy.
Adv Mater. 2019 Dec;31(49):e1904329. doi: 10.1002/adma.201904329. Epub 2019 Sep 19.
7
Molecular probes for fluorescence image-guided cancer surgery.
Curr Opin Chem Biol. 2022 Apr;67:102112. doi: 10.1016/j.cbpa.2021.102112. Epub 2022 Jan 19.
8
Regulatory Aspects of Optical Methods and Exogenous Targets for Cancer Detection.
Cancer Res. 2017 May 1;77(9):2197-2206. doi: 10.1158/0008-5472.CAN-16-3217. Epub 2017 Apr 20.
9
Optical molecular imaging for tumor detection and image-guided surgery.
Biomaterials. 2018 Mar;157:62-75. doi: 10.1016/j.biomaterials.2017.12.002. Epub 2017 Dec 5.
10
Recommendations for reporting on emerging optical imaging agents to promote clinical approval.
Theranostics. 2018 Oct 22;8(19):5336-5347. doi: 10.7150/thno.27384. eCollection 2018.

引用本文的文献

3
Tumor-selective dye-based histological electrophoresis enables intraoperative tumor diagnosis via tumor-specific enhancement.
Theranostics. 2025 Jan 6;15(5):2052-2068. doi: 10.7150/thno.105500. eCollection 2025.
4
Prospects for Fluorescence Molecular Liquid Biopsy of Circulating Tumor Cells in Humans.
Front Photon. 2022;3. doi: 10.3389/fphot.2022.910035. Epub 2022 May 8.
5
Development of Polar BODIPY-Tetrazines for Rapid Pretargeted Fluorescence Imaging.
ACS Omega. 2024 Sep 30;9(41):42498-42505. doi: 10.1021/acsomega.4c06570. eCollection 2024 Oct 15.
6
Orbital Adipose Tissue: The Optimal Control for Back-Table Fluorescence Imaging of Orbital Tumors.
Bioengineering (Basel). 2024 Sep 14;11(9):922. doi: 10.3390/bioengineering11090922.
8
Fluorescence lifetime of injected indocyanine green as a universal marker of solid tumours in patients.
Nat Biomed Eng. 2023 Dec;7(12):1649-1666. doi: 10.1038/s41551-023-01105-2. Epub 2023 Oct 16.
9
Molecular Imaging in Precision-Cut Non-Small Cell Lung Cancer Slices.
Ann Thorac Surg. 2024 Feb;117(2):458-465. doi: 10.1016/j.athoracsur.2023.07.037. Epub 2023 Aug 10.
10
Dual-ratio approach for detection of point fluorophores in biological tissue.
J Biomed Opt. 2023 Jul;28(7):077001. doi: 10.1117/1.JBO.28.7.077001. Epub 2023 Jul 22.

本文引用的文献

1
Intraoperative Imaging with Second Window Indocyanine Green for Head and Neck Lesions and Regional Metastasis.
Otolaryngol Head Neck Surg. 2019 Sep;161(3):539-542. doi: 10.1177/0194599819847152. Epub 2019 Apr 30.
3
Indocyanine-Green for Fluorescence-Guided Surgery of Brain Tumors: Evidence, Techniques, and Practical Experience.
Front Surg. 2019 Mar 12;6:11. doi: 10.3389/fsurg.2019.00011. eCollection 2019.
4
5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas.
J Neurooncol. 2019 Feb;141(3):595-607. doi: 10.1007/s11060-019-03103-4. Epub 2019 Jan 18.
5
5-ALA and FDA approval for glioma surgery.
J Neurooncol. 2019 Feb;141(3):479-486. doi: 10.1007/s11060-019-03098-y. Epub 2019 Jan 14.
6
Established and emerging uses of 5-ALA in the brain: an overview.
J Neurooncol. 2019 Feb;141(3):487-494. doi: 10.1007/s11060-018-03087-7. Epub 2019 Jan 3.
7
Intraoperative near-infrared imaging with receptor-specific versus passive delivery of fluorescent agents in pituitary adenomas.
J Neurosurg. 2018 Dec 14;131(6):1974-1984. doi: 10.3171/2018.7.JNS181642. Print 2019 Dec 1.
8
Quantitative subsurface spatial frequency-domain fluorescence imaging for enhanced glioma resection.
J Biophotonics. 2019 May;12(5):e201800271. doi: 10.1002/jbio.201800271. Epub 2019 Mar 20.
9
Near-Infrared Optical Contrast of Skull Base Tumors During Endoscopic Endonasal Surgery.
Oper Neurosurg (Hagerstown). 2019 Jul 1;17(1):32-42. doi: 10.1093/ons/opy213.
10
Determination of Tumor Margins with Surgical Specimen Mapping Using Near-Infrared Fluorescence.
Cancer Res. 2018 Sep 1;78(17):5144-5154. doi: 10.1158/0008-5472.CAN-18-0878. Epub 2018 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验