Suppr超能文献

利用深度卷积神经网络自动检测局灶性皮质发育不良。

Automated detection of focal cortical dysplasia using a deep convolutional neural network.

机构信息

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada.

Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada.

出版信息

Comput Med Imaging Graph. 2020 Jan;79:101662. doi: 10.1016/j.compmedimag.2019.101662. Epub 2019 Nov 13.

Abstract

Focal cortical dysplasia (FCD) is one of the commonest epileptogenic lesions, and is related to malformations of the cortical development. The findings on magnetic resonance (MR) images are important for the diagnosis and surgical planning of FCD. In this paper, an automated detection technique for FCD is proposed using MR images and deep learning. The input MR image is first preprocessed to correct the bias field, normalize intensities, align with a standard atlas, and strip the non-brain tissues. All cortical patches are then extracted on each axial slice, and these patches are classified into FCD and non-FCD using a deep convolutional neural network (CNN) with five convolutional layers, a max pooling layer, and two fully-connected layers. Finally, the false and missed classifications are corrected in the post-processing stage. The technique is evaluated using images of 10 patients with FCD and 20 controls. The proposed CNN shows a superior performance in classifying cortical image patches compared with multiple CNN architectures. For the system-level evaluation, nine of the ten FCD images are successfully detected, and 85% of the non-FCD images are correctly identified. Overall, this CNN based technique could learn optimal cortical (texture and symmetric) features automatically, and improve the FCD detection.

摘要

局灶性皮质发育不良(FCD)是最常见的致痫性病变之一,与皮质发育畸形有关。磁共振(MR)图像上的发现对 FCD 的诊断和手术规划很重要。本文提出了一种基于 MR 图像和深度学习的 FCD 自动检测技术。首先对输入的 MR 图像进行预处理,以校正偏置场、归一化强度、与标准图谱对齐并去除非脑组织。然后在每个轴向切片上提取所有皮质斑块,并使用具有五个卷积层、一个最大池化层和两个全连接层的深度卷积神经网络(CNN)将这些斑块分类为 FCD 和非 FCD。最后,在后处理阶段纠正错误和漏分类。该技术使用 10 例 FCD 患者和 20 例对照者的图像进行评估。与多种 CNN 架构相比,所提出的 CNN 在分类皮质图像斑块方面表现出更好的性能。在系统级评估中,10 例 FCD 图像中有 9 例成功检测到,85%的非 FCD 图像被正确识别。总体而言,这种基于 CNN 的技术可以自动学习最佳的皮质(纹理和对称)特征,并提高 FCD 的检测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验