Suppr超能文献

使用 PennPET Explorer 进行长轴向视野全身 PET 成像的病变检测能力的数值观察者研究。

Numerical observer study of lesion detectability for a long axial field-of-view whole-body PET imager using the PennPET Explorer.

机构信息

Department of BioEngineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States of America. Author to whom any correspondence should be addressed.

出版信息

Phys Med Biol. 2020 Jan 24;65(3):035002. doi: 10.1088/1361-6560/ab6011.

Abstract

This work uses lesion detectability to characterize the performance of long axial field of view (AFOV) PET scanners which have increased sensitivity compared to clinical scanners. Studies were performed using the PennPET Explorer, a 70 cm long AFOV scanner built at the University of Pennsylvania, for small lesions distributed in a uniform water-filled cylinder (simulations and measurements), an anthropomorphic torso phantom (measurement), and a human subject (measurement). The lesion localization and detection task was quantified numerically using a generalized scan statistics methodology. Detectability was studied as a function of background activity distribution, scan duration for a single bed position, and axial location of the lesions. For the cylindrical phantom, the areas under the localization receiver operating curve (ALROCs) of lesions placed at various axial locations in the scanner were greater than 0.8-a value considered to be clinically acceptable (i.e. 80% probability of detecting lesion)-for scan times of 60 s or longer for standard-of-care (SoC) clinical dose levels. 10 mm diameter lesions placed in the anthropomorphic phantom and human subject resulted in ALROCs of 0.8 or greater for scan times longer than 30 s in the lung region and 60 s in the liver region, also for SoC doses. ALROC results from all three activity distributions show similar trends as a function of counts detected per axial location. These results will be used to guide decisions on imaging parameters, such as scan time and patient dose, when imaging patients in a single bed position on long AFOV systems and can also be applied to clinical scanners with consideration of the sensitivity differences.

摘要

本研究利用病灶可探测性来评估长轴向视野(AFOV)PET 扫描仪的性能,与临床扫描仪相比,这类扫描仪的灵敏度更高。研究使用宾夕法尼亚大学研制的 PennPET Explorer 进行,这是一种 70cm 长的 AFOV 扫描仪,分别在一个充满水的均匀圆柱体内分布小病灶(模拟和测量)、人体模型体模(测量)和人体(测量)中进行了研究。使用广义扫描统计方法对病灶定位和检测任务进行了数值量化。研究了背景活动分布、单个床位扫描时长和病灶轴向位置对探测能力的影响。对于圆柱形体模,放置在扫描仪各个轴向位置的病灶的定位接收者操作曲线(ALROC)下面积大于 0.8-这是临床可接受的值(即 80%的病灶检测概率)-对于标准临床剂量水平的 60s 或更长扫描时间。在人体模型和人体中放置直径为 10mm 的病灶,在肺部区域扫描时间超过 30s、肝脏区域扫描时间超过 60s 时,ALROC 达到 0.8 或更高,这也是标准临床剂量。所有三种活性分布的 ALROC 结果均显示出与每个轴向位置检测到的计数相似的趋势。这些结果将用于指导成像参数的决策,例如在长 AFOV 系统上单床位成像时的扫描时间和患者剂量,也可以考虑灵敏度差异应用于临床扫描仪。

相似文献

2
Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner.
Phys Med Biol. 2015 Jul 7;60(13):5343-58. doi: 10.1088/0031-9155/60/13/5343. Epub 2015 Jun 25.
3
PennPET Explorer: Human Imaging on a Whole-Body Imager.
J Nucl Med. 2020 Jan;61(1):144-151. doi: 10.2967/jnumed.119.231845. Epub 2019 Sep 27.
4
Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness.
Phys Med Biol. 2013 Jun 21;58(12):3995-4012. doi: 10.1088/0031-9155/58/12/3995. Epub 2013 May 17.
5
PennPET Explorer: Design and Preliminary Performance of a Whole-Body Imager.
J Nucl Med. 2020 Jan;61(1):136-143. doi: 10.2967/jnumed.119.229997. Epub 2019 Jun 21.
6
Impact of time-of-flight PET on whole-body oncologic studies: a human observer lesion detection and localization study.
J Nucl Med. 2011 May;52(5):712-9. doi: 10.2967/jnumed.110.086678. Epub 2011 Apr 15.
7
Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner.
Phys Med Biol. 2017 Mar 21;62(6):2465-2485. doi: 10.1088/1361-6560/aa5e46. Epub 2017 Feb 27.
9
Performance evaluation of the PennPET explorer with expanded axial coverage.
Phys Med Biol. 2023 Apr 19;68(9):095007. doi: 10.1088/1361-6560/acc722.
10
Update on the PennPET Explorer: A Whole-body Imager with Scalable Axial Field-of-View.
PET Clin. 2021 Jan;16(1):15-23. doi: 10.1016/j.cpet.2020.09.002.

引用本文的文献

2
Performance and application of the total-body PET/CT scanner: a literature review.
EJNMMI Res. 2024 Apr 12;14(1):38. doi: 10.1186/s13550-023-01059-1.
3
The feasibility of ultralow-activity F-FDG dynamic PET imaging in lung adenocarcinoma patients through total-body PET/CT scanner.
Ann Nucl Med. 2022 Oct;36(10):887-896. doi: 10.1007/s12149-022-01772-2. Epub 2022 Jul 20.
4
PET Parametric Imaging: Past, Present, and Future.
IEEE Trans Radiat Plasma Med Sci. 2020 Nov;4(6):663-675. doi: 10.1109/trpms.2020.3025086. Epub 2020 Sep 21.
5
Quantifying bias and precision of kinetic parameter estimation on the PennPET Explorer, a long axial field-of-view scanner.
IEEE Trans Radiat Plasma Med Sci. 2020 Nov;4(6):735-749. doi: 10.1109/trpms.2020.3021315. Epub 2020 Sep 2.
6
Update on the PennPET Explorer: A Whole-body Imager with Scalable Axial Field-of-View.
PET Clin. 2021 Jan;16(1):15-23. doi: 10.1016/j.cpet.2020.09.002.
7
Total Body PET: Why, How, What for?
IEEE Trans Radiat Plasma Med Sci. 2020 May;4(3):283-292. doi: 10.1109/trpms.2020.2985403. Epub 2020 Apr 3.
8
Benefit of Improved Performance with State-of-the Art Digital PET/CT for Lesion Detection in Oncology.
J Nucl Med. 2020 Nov;61(11):1684-1690. doi: 10.2967/jnumed.120.242305. Epub 2020 Mar 20.

本文引用的文献

1
PennPET Explorer: Human Imaging on a Whole-Body Imager.
J Nucl Med. 2020 Jan;61(1):144-151. doi: 10.2967/jnumed.119.231845. Epub 2019 Sep 27.
2
PennPET Explorer: Design and Preliminary Performance of a Whole-Body Imager.
J Nucl Med. 2020 Jan;61(1):136-143. doi: 10.2967/jnumed.119.229997. Epub 2019 Jun 21.
3
First Human Imaging Studies with the EXPLORER Total-Body PET Scanner.
J Nucl Med. 2019 Mar;60(3):299-303. doi: 10.2967/jnumed.119.226498. Epub 2019 Feb 7.
4
Performance Characteristics of the Digital Biograph Vision PET/CT System.
J Nucl Med. 2019 Jul;60(7):1031-1036. doi: 10.2967/jnumed.118.215418. Epub 2019 Jan 10.
5
Performance Evaluation of the Vereos PET/CT System According to the NEMA NU2-2012 Standard.
J Nucl Med. 2019 Apr;60(4):561-567. doi: 10.2967/jnumed.118.215541. Epub 2018 Oct 25.
6
Automated model-based quantitative analysis of phantoms with spherical inserts in FDG PET scans.
Med Phys. 2018 Jan;45(1):258-276. doi: 10.1002/mp.12643. Epub 2017 Nov 23.
7
Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care.
J Nucl Med. 2018 Jan;59(1):3-12. doi: 10.2967/jnumed.116.184028. Epub 2017 Sep 21.
8
Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner.
Phys Med Biol. 2015 Jul 7;60(13):5343-58. doi: 10.1088/0031-9155/60/13/5343. Epub 2015 Jun 25.
9
Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions.
Phys Med Biol. 2014 Jul 21;59(14):3843-59. doi: 10.1088/0031-9155/59/14/3843. Epub 2014 Jun 23.
10
Determination of accuracy and precision of lesion uptake measurements in human subjects with time-of-flight PET.
J Nucl Med. 2014 Apr;55(4):602-7. doi: 10.2967/jnumed.113.127035. Epub 2014 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验