Departamento de Automática, Campus Universitario Universidad de Alcala, Ctra. Madrid-Barcelona, km. 33.600, Alcalá de Henares, 28805 Madrid, Spain.
Sensors (Basel). 2019 Dec 4;19(24):0. doi: 10.3390/s19245342.
Urban traffic routing is deemed to be a significant challenge in intelligent transportation systems. Existing implementations suffer from several intrinsic issues such as scalability in centralized systems, unnecessary complexity of mechanisms and communication in distributed systems, and lack of privacy. These imply force intensive computational tasks in the traffic control center, continuous communication in real-time with involved stakeholders which require drivers to reveal their location, origin, and destination of their trips. In this paper we present an innovative urban traffic routing framework and reference architecture (multimap traffic control architecture, MuTraff), which is based on the strategical generation and distribution of a set of traffic network maps (traffic weighted multimaps, TWM) to vehicle categories or fleets. Each map in a TWM map set has the same topology but a different distribution of link weights, which are computed by considering policies and constraints that may apply to different vehicle groups. MuTraff delivers a traffic management system (TMS), where a traffic control center generates and distributes maps, while routing computation is performed at the vehicles. We show how this balance between generation, distribution, and routing computation improves scalability, eases communication complexities, and solves former privacy issues. Our study presents case studies in a real city environment for (a) global congestion management using random maps; (b) congestion control on road incidents; and c) emergency fleets routing. We show that MuTraff is a promising foundation framework that is easy to deploy, and is compatible with other existing TMS frameworks.
城市交通路线规划被认为是智能交通系统中的一个重大挑战。现有的实现方案存在一些内在问题,例如集中式系统的可扩展性、分布式系统中机制和通信的不必要复杂性,以及缺乏隐私性。这些问题意味着在交通控制中心需要进行强制密集型计算任务,需要与相关利益相关者进行实时连续通信,这要求驾驶员透露他们的位置、出行的起点和终点。在本文中,我们提出了一种创新的城市交通路线规划框架和参考架构(多图交通控制架构,MuTraff),它基于一组交通网络图(带权多重图,TWM)的策略性生成和分发,这些图针对车辆类别或车队进行分发。在 TWM 图集中的每个图具有相同的拓扑结构,但链路权重的分布不同,这些权重是通过考虑可能适用于不同车辆组的策略和约束来计算的。MuTraff 提供了一个交通管理系统(TMS),其中交通控制中心生成和分发地图,而路由计算则在车辆上执行。我们展示了这种生成、分发和路由计算之间的平衡如何提高可扩展性、减轻通信复杂性,并解决以前的隐私问题。我们的研究在真实城市环境中进行了案例研究,包括:(a) 使用随机图进行全局拥塞管理;(b) 道路事故的拥塞控制;和 (c) 应急车队路由。我们表明,MuTraff 是一个有前途的基础框架,易于部署,并且与其他现有的 TMS 框架兼容。