Suppr超能文献

动态拥挤调控转录。

Dynamic Crowding Regulates Transcription.

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.

Department of Biomedical Engineering, Northwestern University, Evanston, Illinois.

出版信息

Biophys J. 2020 May 5;118(9):2117-2129. doi: 10.1016/j.bpj.2019.11.007. Epub 2019 Nov 15.

Abstract

The nuclear environment is highly crowded by biological macromolecules, including chromatin and mobile proteins, which alter the kinetics and efficiency of transcriptional machinery. These alterations have been described, both theoretically and experimentally, for steady-state crowding densities; however, temporal changes in crowding density ("dynamic crowding") have yet to be integrated with gene expression. Dynamic crowding is pertinent to nuclear biology because processes such as chromatin translocation and protein diffusion lend to highly mobile biological crowders. Therefore, to capture such dynamic crowding and investigate its influence on transcription, we employ a three-pronged, systems-molecular approach. A system of chemical reactions represents the transcription pathway, the rates of which are determined by molecular-scale simulations; Brownian dynamics and Monte Carlo simulations quantify protein diffusion and DNA-protein binding affinity, dependent on macromolecular density. Altogether, this approach shows that transcription depends critically on dynamic crowding as the gene expression resultant from dynamic crowding can be profoundly different than that of steady-state crowding. In fact, expression levels can display both amplification and suppression and are notably different for genes or gene populations with different chemical and structural properties. These properties can be exploited to impose circadian expression, which is asymmetric and varies in strength, or to explain expression in cells under biomechanical stress. Therefore, this work demonstrates that dynamic crowding nontrivially alters transcription kinetics and presents dynamic crowding within the bulk nuclear nanoenvironment as a novel regulatory framework for gene expression.

摘要

核环境高度拥挤着生物大分子,包括染色质和可移动的蛋白质,它们改变了转录机器的动力学和效率。这些改变无论是在理论上还是在实验上都已经被描述过了,适用于稳态拥挤密度;然而,拥挤密度的时间变化(“动态拥挤”)尚未与基因表达相结合。动态拥挤与核生物学有关,因为诸如染色质易位和蛋白质扩散等过程导致生物拥挤者高度移动。因此,为了捕捉这种动态拥挤并研究其对转录的影响,我们采用了一种三管齐下的系统-分子方法。化学反应系统代表转录途径,其速率由分子尺度模拟确定;布朗动力学和蒙特卡罗模拟根据大分子密度量化蛋白质扩散和 DNA-蛋白质结合亲和力。总的来说,这种方法表明转录严重依赖于动态拥挤,因为动态拥挤的基因表达结果可能与稳态拥挤有很大的不同。事实上,表达水平可以显示放大和抑制,并且对于具有不同化学和结构特性的基因或基因群体,表达水平明显不同。这些特性可以被用来施加生物钟表达,其不对称且强度变化,或解释在生物力学应激下的细胞中的表达。因此,这项工作表明,动态拥挤会改变转录动力学,并将核内纳米环境中的动态拥挤作为基因表达的一个新的调控框架。

相似文献

1
Dynamic Crowding Regulates Transcription.
Biophys J. 2020 May 5;118(9):2117-2129. doi: 10.1016/j.bpj.2019.11.007. Epub 2019 Nov 15.
2
Macromolecular crowding as a regulator of gene transcription.
Biophys J. 2014 Apr 15;106(8):1801-10. doi: 10.1016/j.bpj.2014.02.019.
3
How macromolecules softness affects diffusion under crowding.
Soft Matter. 2022 Jul 27;18(29):5366-5370. doi: 10.1039/d2sm00357k.
4
6
Effects of macromolecular crowding on genetic networks.
Biophys J. 2011 Dec 21;101(12):2882-91. doi: 10.1016/j.bpj.2011.10.053. Epub 2011 Dec 20.
7
Multiscale Modeling of Diffusion in a Crowded Environment.
Bull Math Biol. 2017 Nov;79(11):2672-2695. doi: 10.1007/s11538-017-0346-6. Epub 2017 Sep 18.
8
Thermodynamics of Macromolecular Association in Heterogeneous Crowding Environments: Theoretical and Simulation Studies with a Simplified Model.
J Phys Chem B. 2016 Nov 23;120(46):11856-11865. doi: 10.1021/acs.jpcb.6b06243. Epub 2016 Nov 15.
9
Modulating internal transition kinetics of responsive macromolecules by collective crowding.
J Chem Phys. 2021 Dec 28;155(24):244902. doi: 10.1063/5.0076139.
10
Mechanism of Facilitated Diffusion during a DNA Search in Crowded Environments.
J Phys Chem B. 2016 Nov 3;120(43):11113-11122. doi: 10.1021/acs.jpcb.6b07813. Epub 2016 Oct 25.

引用本文的文献

1
Leveraging chromatin packing domains to target chemoevasion in vivo.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2425319122. doi: 10.1073/pnas.2425319122. Epub 2025 Jul 22.
2
Geometrically encoded positioning of introns, intergenic segments, and exons in the human genome.
bioRxiv. 2025 May 29:2025.05.29.656862. doi: 10.1101/2025.05.29.656862.
3
The impact of cell density variations on nanoparticle uptake across bioprinted A549 gradients.
Front Bioeng Biotechnol. 2025 Apr 30;13:1584635. doi: 10.3389/fbioe.2025.1584635. eCollection 2025.
4
Leveraging chromatin packing domains to target chemoevasion .
bioRxiv. 2024 Nov 15:2024.11.14.623612. doi: 10.1101/2024.11.14.623612.
5
Hypothesis: bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock.
Theory Biosci. 2024 Nov;143(4):253-277. doi: 10.1007/s12064-024-00427-2. Epub 2024 Nov 6.
6
A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming.
Biophys Rev (Melville). 2023 Dec;4(4):041304. doi: 10.1063/5.0179719. Epub 2023 Dec 21.
7
Progress on Crowding Effect in Cell-like Structures.
Membranes (Basel). 2022 Jun 3;12(6):593. doi: 10.3390/membranes12060593.
8
Regulation of organelle size and organization during development.
Semin Cell Dev Biol. 2023 Jan 15;133:53-64. doi: 10.1016/j.semcdb.2022.02.002. Epub 2022 Feb 8.
9
Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET.
Curr Top Membr. 2021;88:75-118. doi: 10.1016/bs.ctm.2021.09.001. Epub 2021 Nov 16.

本文引用的文献

1
Chromatin three-dimensional interactions mediate genetic effects on gene expression.
Science. 2019 May 3;364(6439). doi: 10.1126/science.aat8266.
2
Extensile motor activity drives coherent motions in a model of interphase chromatin.
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11442-11447. doi: 10.1073/pnas.1807073115. Epub 2018 Oct 22.
3
New human gene tally reignites debate.
Nature. 2018 Jun;558(7710):354-355. doi: 10.1038/d41586-018-05462-w.
4
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns.
ACS Synth Biol. 2018 May 18;7(5):1251-1258. doi: 10.1021/acssynbio.8b00139. Epub 2018 Apr 25.
5
Macrogenomic engineering via modulation of the scaling of chromatin packing density.
Nat Biomed Eng. 2017 Nov;1(11):902-913. doi: 10.1038/s41551-017-0153-2. Epub 2017 Nov 6.
6
Recent evidence that TADs and chromatin loops are dynamic structures.
Nucleus. 2018 Jan 1;9(1):20-32. doi: 10.1080/19491034.2017.1389365. Epub 2017 Dec 14.
7
Cell volume change through water efflux impacts cell stiffness and stem cell fate.
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):E8618-E8627. doi: 10.1073/pnas.1705179114. Epub 2017 Sep 25.
8
On the origin of shape fluctuations of the cell nucleus.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):10338-10343. doi: 10.1073/pnas.1702226114. Epub 2017 Sep 12.
9
10
Macromolecular crowding directs the motion of small molecules inside cells.
J R Soc Interface. 2017 Jun;14(131). doi: 10.1098/rsif.2017.0047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验