Suppr超能文献

使用全卷积架构从原始多通道 EEG 中检测新生儿癫痫发作。

Neonatal seizure detection from raw multi-channel EEG using a fully convolutional architecture.

机构信息

Department of Electrical and Electronic Engineering, University College Cork, College Rd, Cork, Ireland; INFANT Research Centre, Cork University Hospital, Cork, Ireland.

Department of Pediatrics and Child Health, University College Cork, Cork, Ireland; INFANT Research Centre, Cork University Hospital, Cork, Ireland.

出版信息

Neural Netw. 2020 Mar;123:12-25. doi: 10.1016/j.neunet.2019.11.023. Epub 2019 Nov 30.

Abstract

A deep learning classifier for detecting seizures in neonates is proposed. This architecture is designed to detect seizure events from raw electroencephalogram (EEG) signals as opposed to the state-of-the-art hand engineered feature-based representation employed in traditional machine learning based solutions. The seizure detection system utilises only convolutional layers in order to process the multichannel time domain signal and is designed to exploit the large amount of weakly labelled data in the training stage. The system performance is assessed on a large database of continuous EEG recordings of 834h in duration; this is further validated on a held-out publicly available dataset and compared with two baseline SVM based systems. The developed system achieves a 56% relative improvement with respect to a feature-based state-of-the art baseline, reaching an AUC of 98.5%; this also compares favourably both in terms of performance and run-time. The effect of varying architectural parameters is thoroughly studied. The performance improvement is achieved through novel architecture design which allows more efficient usage of available training data and end-to-end optimisation from the front-end feature extraction to the back-end classification. The proposed architecture opens new avenues for the application of deep learning to neonatal EEG, where the performance becomes a function of the amount of training data with less dependency on the availability of precise clinical labels.

摘要

提出了一种用于检测新生儿癫痫发作的深度学习分类器。该架构旨在从原始脑电图 (EEG) 信号中检测癫痫发作事件,而不是传统机器学习基于解决方案中采用的基于手工设计特征的最新技术。癫痫检测系统仅使用卷积层来处理多通道时域信号,并设计用于在训练阶段利用大量弱标记数据。该系统的性能在一个持续 834 小时的大型连续 EEG 记录数据库上进行评估; 这进一步在一个保留的公开可用数据集上进行验证,并与两个基于 SVM 的基线系统进行比较。与基于特征的最新技术基线相比,所开发的系统实现了 56%的相对改进,达到了 98.5%的 AUC; 在性能和运行时方面也具有优势。还彻底研究了架构参数变化的影响。通过允许更有效地使用可用训练数据以及从前端特征提取到后端分类的端到端优化的新颖架构设计实现了性能改进。所提出的架构为深度学习在新生儿 EEG 中的应用开辟了新途径,其中性能成为训练数据量的函数,而对精确临床标签的可用性的依赖性较小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验