Suppr超能文献

ToxCast 化合物对神经网络功能的多变量活性模式的浓度-反应评估。

Concentration-response evaluation of ToxCast compounds for multivariate activity patterns of neural network function.

机构信息

Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.

Science for Life Laboratory, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.

出版信息

Arch Toxicol. 2020 Feb;94(2):469-484. doi: 10.1007/s00204-019-02636-x. Epub 2019 Dec 10.

Abstract

The US Environmental Protection Agency's ToxCast program has generated toxicity data for thousands of chemicals but does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean firing rate (MFR) in rat primary cortical networks. Here, we expand this approach by retesting 384 of those compounds (including 222 active in the previous screen) in concentration-response across 43 network activity parameters to evaluate neural network function. Using hierarchical clustering and machine learning methods on the full suite of chemical-parameter response data, we identified 15 network activity parameters crucial in characterizing activity of 237 compounds that were response actives ("hits"). Recognized neurotoxic compounds in this network function assay were often more potent compared to other ToxCast assays. Of these chemical-parameter responses, we identified three k-means clusters of chemical-parameter activity (i.e., multivariate MEA response patterns). Next, we evaluated the MEA clusters for enrichment of chemical features using a subset of ToxPrint chemotypes, revealing chemical structural features that distinguished the MEA clusters. Finally, we assessed distribution of neurotoxicants with known pharmacology within the clusters and found that compounds segregated differentially. Collectively, these results demonstrate that multivariate MEA activity patterns can efficiently screen for diverse chemical activities relevant to neurotoxicity, and that response patterns may have predictive value related to chemical structural features.

摘要

美国环保署的 ToxCast 计划已经生成了数千种化学物质的毒性数据,但不能充分评估潜在的神经毒性。基于微电极阵列 (MEA) 的神经元网络提供了一种有效的方法来筛选化合物的神经活性,并区分化合物对放电、爆发和连接模式的影响。此前,曾对 ToxCast 二期文库中的单一浓度进行筛选,以研究其对大鼠原代皮质网络中平均放电率 (MFR) 的影响。在这里,我们通过在 43 个网络活动参数中对 384 种化合物(包括在前一次筛选中 222 种有活性的化合物)进行浓度反应的重新测试,扩展了这一方法,以评估神经网络功能。我们使用化学-参数响应数据的完整套件中的层次聚类和机器学习方法,确定了 15 个网络活动参数,这些参数对于描述 237 种化合物(其中 237 种化合物是反应活性化合物,即“命中化合物”)的网络活性至关重要。在这个网络功能测定中,被识别为神经毒性的化合物通常比其他 ToxCast 测定更为有效。在这些化学-参数响应中,我们确定了三个化学参数活动的 k-means 聚类(即,多变量 MEA 响应模式)。接下来,我们使用 ToxPrint 化学型的一个子集评估 MEA 聚类中化学特征的富集情况,揭示了区分 MEA 聚类的化学结构特征。最后,我们评估了已知药理学的神经毒素在聚类中的分布情况,发现化合物的分布存在差异。总之,这些结果表明,多变量 MEA 活性模式可以有效地筛选与神经毒性相关的多种化学活性,并且响应模式可能与化学结构特征具有预测价值。

相似文献

1
Concentration-response evaluation of ToxCast compounds for multivariate activity patterns of neural network function.
Arch Toxicol. 2020 Feb;94(2):469-484. doi: 10.1007/s00204-019-02636-x. Epub 2019 Dec 10.
3
Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds.
Neurotoxicology. 2014 Sep;44:204-17. doi: 10.1016/j.neuro.2014.06.012. Epub 2014 Jul 2.
5
Defining toxicological tipping points in neuronal network development.
Toxicol Appl Pharmacol. 2018 Sep 1;354:81-93. doi: 10.1016/j.taap.2018.01.017. Epub 2018 Feb 3.
7
Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set.
Neurotoxicology. 2012 Oct;33(5):1048-57. doi: 10.1016/j.neuro.2012.05.001. Epub 2012 May 28.
10
A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing.
Neurotoxicology. 2017 May;60:280-292. doi: 10.1016/j.neuro.2016.03.019. Epub 2016 Mar 29.

引用本文的文献

1
Recent advances in AI-based toxicity prediction for drug discovery.
Front Chem. 2025 Jul 8;13:1632046. doi: 10.3389/fchem.2025.1632046. eCollection 2025.
6
Effects of chronic insecticide exposure on neuronal network development in vitro in rat cortical cultures.
Arch Toxicol. 2024 Nov;98(11):3837-3857. doi: 10.1007/s00204-024-03840-0. Epub 2024 Aug 20.

本文引用的文献

2
In Vitro Screening for Seizure Liability Using Microelectrode Array Technology.
Toxicol Sci. 2018 May 1;163(1):240-253. doi: 10.1093/toxsci/kfy029.
3
5
Comparison of the acute inhibitory effects of Tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes.
Toxicol Lett. 2017 Mar 15;270:12-16. doi: 10.1016/j.toxlet.2017.02.014. Epub 2017 Feb 10.
6
Microelectrode array (MEA) platform as a sensitive tool to detect and evaluate Ostreopsis cf. ovata toxicity.
Harmful Algae. 2016 May;55:230-237. doi: 10.1016/j.hal.2016.03.001. Epub 2016 Apr 1.
7
tcpl: the ToxCast pipeline for high-throughput screening data.
Bioinformatics. 2017 Feb 15;33(4):618-620. doi: 10.1093/bioinformatics/btw680.
8
In vitro evaluation of pyrethroid-mediated changes on neuronal burst parameters using microelectrode arrays.
Neurotoxicology. 2016 Dec;57:270-281. doi: 10.1016/j.neuro.2016.10.007. Epub 2016 Oct 13.
9
Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures.
Neurotoxicology. 2016 Dec;57:194-202. doi: 10.1016/j.neuro.2016.10.002. Epub 2016 Oct 5.
10
ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.
Chem Res Toxicol. 2016 Aug 15;29(8):1225-51. doi: 10.1021/acs.chemrestox.6b00135. Epub 2016 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验