Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
Science for Life Laboratory, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
Arch Toxicol. 2020 Feb;94(2):469-484. doi: 10.1007/s00204-019-02636-x. Epub 2019 Dec 10.
The US Environmental Protection Agency's ToxCast program has generated toxicity data for thousands of chemicals but does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean firing rate (MFR) in rat primary cortical networks. Here, we expand this approach by retesting 384 of those compounds (including 222 active in the previous screen) in concentration-response across 43 network activity parameters to evaluate neural network function. Using hierarchical clustering and machine learning methods on the full suite of chemical-parameter response data, we identified 15 network activity parameters crucial in characterizing activity of 237 compounds that were response actives ("hits"). Recognized neurotoxic compounds in this network function assay were often more potent compared to other ToxCast assays. Of these chemical-parameter responses, we identified three k-means clusters of chemical-parameter activity (i.e., multivariate MEA response patterns). Next, we evaluated the MEA clusters for enrichment of chemical features using a subset of ToxPrint chemotypes, revealing chemical structural features that distinguished the MEA clusters. Finally, we assessed distribution of neurotoxicants with known pharmacology within the clusters and found that compounds segregated differentially. Collectively, these results demonstrate that multivariate MEA activity patterns can efficiently screen for diverse chemical activities relevant to neurotoxicity, and that response patterns may have predictive value related to chemical structural features.
美国环保署的 ToxCast 计划已经生成了数千种化学物质的毒性数据,但不能充分评估潜在的神经毒性。基于微电极阵列 (MEA) 的神经元网络提供了一种有效的方法来筛选化合物的神经活性,并区分化合物对放电、爆发和连接模式的影响。此前,曾对 ToxCast 二期文库中的单一浓度进行筛选,以研究其对大鼠原代皮质网络中平均放电率 (MFR) 的影响。在这里,我们通过在 43 个网络活动参数中对 384 种化合物(包括在前一次筛选中 222 种有活性的化合物)进行浓度反应的重新测试,扩展了这一方法,以评估神经网络功能。我们使用化学-参数响应数据的完整套件中的层次聚类和机器学习方法,确定了 15 个网络活动参数,这些参数对于描述 237 种化合物(其中 237 种化合物是反应活性化合物,即“命中化合物”)的网络活性至关重要。在这个网络功能测定中,被识别为神经毒性的化合物通常比其他 ToxCast 测定更为有效。在这些化学-参数响应中,我们确定了三个化学参数活动的 k-means 聚类(即,多变量 MEA 响应模式)。接下来,我们使用 ToxPrint 化学型的一个子集评估 MEA 聚类中化学特征的富集情况,揭示了区分 MEA 聚类的化学结构特征。最后,我们评估了已知药理学的神经毒素在聚类中的分布情况,发现化合物的分布存在差异。总之,这些结果表明,多变量 MEA 活性模式可以有效地筛选与神经毒性相关的多种化学活性,并且响应模式可能与化学结构特征具有预测价值。