Suppr超能文献

通过具有分布偏移校正的紧凑神经网络实现稳健、自动化的睡眠评分。

Robust, automated sleep scoring by a compact neural network with distributional shift correction.

机构信息

Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America.

Redwood Center for Theoretical Neuroscience, University of California, Berkeley, California, United States of America.

出版信息

PLoS One. 2019 Dec 13;14(12):e0224642. doi: 10.1371/journal.pone.0224642. eCollection 2019.

Abstract

Studying the biology of sleep requires the accurate assessment of the state of experimental subjects, and manual analysis of relevant data is a major bottleneck. Recently, deep learning applied to electroencephalogram and electromyogram data has shown great promise as a sleep scoring method, approaching the limits of inter-rater reliability. As with any machine learning algorithm, the inputs to a sleep scoring classifier are typically standardized in order to remove distributional shift caused by variability in the signal collection process. However, in scientific data, experimental manipulations introduce variability that should not be removed. For example, in sleep scoring, the fraction of time spent in each arousal state can vary between control and experimental subjects. We introduce a standardization method, mixture z-scoring, that preserves this crucial form of distributional shift. Using both a simulated experiment and mouse in vivo data, we demonstrate that a common standardization method used by state-of-the-art sleep scoring algorithms introduces systematic bias, but that mixture z-scoring does not. We present a free, open-source user interface that uses a compact neural network and mixture z-scoring to allow for rapid sleep scoring with accuracy that compares well to contemporary methods. This work provides a set of computational tools for the robust automation of sleep scoring.

摘要

研究睡眠生物学需要准确评估实验对象的状态,而对相关数据进行手动分析是一个主要的瓶颈。最近,深度学习在脑电图和肌电图数据中的应用作为一种睡眠评分方法显示出了巨大的潜力,接近了评分者间可靠性的极限。与任何机器学习算法一样,睡眠评分分类器的输入通常需要标准化,以消除信号采集过程中变化引起的分布偏移。然而,在科学数据中,实验操作会引入不应该消除的可变性。例如,在睡眠评分中,每个觉醒状态的时间比例在对照和实验对象之间可能有所不同。我们引入了一种标准化方法,即混合 Z 得分,它保留了这种关键的分布偏移形式。我们使用模拟实验和小鼠体内数据进行了演示,表明最先进的睡眠评分算法中使用的一种常见标准化方法会引入系统偏差,但混合 Z 得分不会。我们提供了一个免费的开源用户界面,该界面使用紧凑的神经网络和混合 Z 得分,允许快速进行睡眠评分,其准确性可与当代方法相媲美。这项工作为睡眠评分的稳健自动化提供了一套计算工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ffa/6910668/5a26da86a332/pone.0224642.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验