Zhai Y H, Chen Q, Han H D, Zhao X X, Gao Y Q, Zhou X, He J
Tongji University School of Medicine, Shanghai 200092, China.
Department of Health Statistics, The Second Military Medical University, Shanghai 200433, China.
Zhonghua Liu Xing Bing Xue Za Zhi. 2019 Nov 10;40(11):1456-1460. doi: 10.3760/cma.j.issn.0254-6450.2019.11.021.
In medical follow-up studies, longitudinal data and survival data are often accompanied and associated with each other, thus respective analysis of longitudinal and survival data might lead to biased results. Joint model can correct deviations, improve the efficiency of parameter estimation and provide effective inferences by simultaneously processing longitudinal and survival data. It is a popular method in medical research. Joint model has made much progress, whereas the literature about the joint model and its application is limited in China. This paper summarizes the main idea, basic framework, parameter estimation methods of random effect joint model and introduces the analysis on AIDS data set based on the R software package 'JM' to clarify the advantages of the joint model in processing medical follow-up data and promote the use of the joint model in clinical research.
在医学随访研究中,纵向数据和生存数据常常相互伴随且相关,因此对纵向数据和生存数据进行单独分析可能会导致有偏差的结果。联合模型可以通过同时处理纵向数据和生存数据来纠正偏差、提高参数估计效率并提供有效的推断。它是医学研究中的一种常用方法。联合模型已经取得了很大进展,然而在中国,关于联合模型及其应用的文献却很有限。本文总结了随机效应联合模型的主要思想、基本框架、参数估计方法,并介绍了基于R软件包“JM”对艾滋病数据集的分析,以阐明联合模型在处理医学随访数据方面的优势,并促进联合模型在临床研究中的应用。