ACS Appl Mater Interfaces. 2020 Jan 8;12(1):1867-1876. doi: 10.1021/acsami.9b17623. Epub 2019 Dec 27.
Construction of the semimetal/semiconductor composite interface is widely used to promote the O molecule adsorption and charge transfer for boosting solar-driven molecular oxygen activation (MOA). Herein, a Bi@BiMoO heterostructure is fabricated via a two-step wet chemical method as a typical photocatalyst to investigate the underlying mechanism of Bi-coordinated facet-dependent MOA under visible-light illumination. Density functional theory and systematical characterization methods reveal the distinct charge transfer and O activation processes on the surface of Bi nanoparticle-deposited BiMoO nanosheets with different facets exposed. By virtue of a particular and efficient [BiO] → Bi → MoO interfacial charge-transfer channel, Bi deposited on the (001) facet of BiMoO can observably intensify MOA, thereby giving birth to more generation of reactive oxygen species and endowing the Bi@BiMoO with excellent photocatalytic performance in sodium pentachlorophenate (NaPCP) removal. The decomposition pathway of NaPCP is also proposed based on the intermediate determination and mineralization analysis. This work provides deep insights into the mechanism of facet-dependent MOA over a semimetal-semiconductor system and also sheds light on designing effective molecular oxygen-activated interface for environmental remediation.
构建半导体/金属复合材料界面广泛用于促进 O 分子的吸附和电荷转移,从而促进太阳能驱动的分子氧活化(MOA)。本文通过两步湿化学法制备了 Bi@BiMoO 异质结构作为典型的光催化剂,以研究可见光照射下 Bi 配位面依赖性 MOA 的潜在机制。密度泛函理论和系统的表征方法揭示了在暴露不同晶面的 Bi 纳米颗粒沉积的 BiMoO 纳米片表面上的明显的电荷转移和 O 活化过程。通过一个特殊且有效的[BiO]→Bi→MoO 界面电荷转移通道,沉积在 BiMoO(001)晶面上的 Bi 可以显著增强 MOA,从而产生更多的活性氧物种,并赋予 Bi@BiMoO 在去除五氯酚酸钠(NaPCP)方面优异的光催化性能。还基于中间产物的确定和矿化分析提出了 NaPCP 的分解途径。这项工作深入了解了半导体/金属复合材料体系中面依赖性 MOA 的机制,并为设计用于环境修复的有效的分子氧活化界面提供了思路。