Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, United States.
Cryobiophysica Inc., Chevy Chase, MD 20815, United States.
J Chromatogr B Analyt Technol Biomed Life Sci. 2020 Jan 1;1136:121927. doi: 10.1016/j.jchromb.2019.121927. Epub 2019 Dec 6.
Probing the affinity of a ligand for homologous protein targets currently relies on laborious assays that need special equipment and high amounts of isolated, highly pure proteins. Herein we present the use of pISep, an integrated buffer system and modeling package, as an analytical method to rapidly and accurately probe the binding strength and mechanisms of homologous proteins to surface-bound ligands. To demonstrate our method, we utilized the four subclasses of human immunoglobulin G (IgG) as model homologous protein targets and the IgG-binding peptide HWRGWV as model ligand. Following IgG adsorption on a HWRGWV-Toyopearl adsorbent, the pISep buffer system was used to run uncoupled dual elution gradients of pH (from pH 8.5 to 2.5) and either isocratic or time dependent salt concentration. Both the sequence and partial overlap of elution times (IgG > IgG ≥ IgG > IgG) was found to match closely the values of binding strength (K) determined with both in silico docking simulations and isothermal titration calorimetry experiments. pISep gradients performed at different values of ionic strengths provided a means to compare the contribution of hydrophobic vs. electrostatic interactions to the IgG-peptide affinity. The shifts in retention times indicated that, among the various components of the binding energy, the hydrophobic interaction dominates in the binding of IgG and IgG, whereas the binding of IgG and IgG features a balance of electrostatic and hydrophobic modes. These findings were also confirmed by the in silico analysis of the complexes formed by HWRGWV and the Fc fragment of the IgG subclasses. Collectively, these results indicate that the retention times on pISep elution gradients - in particular peak max, overlap, and shift under different conditions - directly correlate to the strength and nature of protein-ligand interactions. This work demonstrates the effectiveness of the pISep toolbox for probing the differential binding of homologous proteins to a reference ligand and informing the optimization of platform processes for the purification and fractionation of biotherapeutics.
目前,探测配体与同源蛋白质靶标的亲和力依赖于需要特殊设备和大量分离的、高度纯化的蛋白质的费力测定法。在此,我们提出使用 pISep(一种集成的缓冲液系统和建模软件包)作为一种分析方法,用于快速、准确地探测同源蛋白质与表面结合配体的结合强度和机制。为了证明我们的方法,我们使用了人免疫球蛋白 G(IgG)的四个亚类作为模型同源蛋白质靶标和 IgG 结合肽 HWRGWV 作为模型配体。在 IgG 吸附到 HWRGWV-Toyopearl 吸附剂上后,使用 pISep 缓冲液系统运行 pH(从 8.5 到 2.5)和等度或时间依赖的盐浓度的非偶联双洗脱梯度。洗脱时间的顺序和部分重叠(IgG > IgG ≥ IgG > IgG)与通过计算机对接模拟和等温滴定量热法实验确定的结合强度(K)值非常吻合。在不同离子强度下执行的 pISep 梯度提供了一种比较疏水性与静电相互作用对 IgG-肽亲和力贡献的方法。保留时间的变化表明,在结合能的各种组成部分中,疏水性相互作用在 IgG 和 IgG 的结合中占主导地位,而 IgG 和 IgG 的结合则以静电和疏水性模式的平衡为特征。这些发现也通过对 HWRGWV 与 IgG 亚类的 Fc 片段形成的复合物的计算机分析得到了证实。总的来说,这些结果表明,pISep 洗脱梯度上的保留时间 - 特别是峰最大值、重叠和在不同条件下的位移 - 与蛋白质-配体相互作用的强度和性质直接相关。这项工作证明了 pISep 工具包用于探测同源蛋白质对参考配体的差异结合的有效性,并为生物治疗药物的纯化和分级的平台过程的优化提供了信息。