Department of Computer Science, Harvey Mudd College, Claremont, 91711, CA, USA.
BMC Bioinformatics. 2019 Dec 17;20(Suppl 20):639. doi: 10.1186/s12859-019-3206-6.
Reconciliation methods are widely used to explain incongruence between a gene tree and species tree. However, the common approach of inferring maximum parsimony reconciliations (MPRs) relies on user-defined costs for each type of event, which can be difficult to estimate. Prior work has explored the relationship between event costs and maximum parsimony reconciliations in the duplication-loss and duplication-transfer-loss models, but no studies have addressed this relationship in the more complicated duplication-loss-coalescence model.
We provide a fixed-parameter tractable algorithm for computing Pareto-optimal reconciliations and recording all events that arise in those reconciliations, along with their frequencies. We apply this method to a case study of 16 fungi to systematically characterize the complexity of MPR space across event costs and identify events supported across this space.
This work provides a new framework for studying the relationship between event costs and reconciliations that incorporates both macro-evolutionary events and population effects and is thus broadly applicable across eukaryotic species.
重整方法被广泛用于解释基因树和物种树之间的不一致。然而,推断最大简约重整(MPR)的常用方法依赖于每种事件类型的用户定义成本,这可能难以估计。先前的工作已经探讨了事件成本与重复-丢失和重复-转移-丢失模型中最大简约重整之间的关系,但没有研究解决更复杂的重复-丢失-合并模型中的这种关系。
我们提供了一种固定参数可解算法,用于计算帕累托最优重整,并记录在这些重整中出现的所有事件及其频率。我们将这种方法应用于 16 种真菌的案例研究,系统地描述了跨事件成本的 MPR 空间的复杂性,并确定了在此空间中得到支持的事件。
这项工作提供了一个新的框架,用于研究事件成本与重整之间的关系,该框架既包含宏观进化事件,也包含群体效应,因此在整个真核生物物种中具有广泛的适用性。