Department of Chemistry , Renmin University of China , Beijing 100872 , China.
Department of Food Science , University of Copenhagen , Rolighedsvej 30 , DK-1958 Frederiksberg , Denmark.
J Phys Chem B. 2020 Jan 16;124(2):380-388. doi: 10.1021/acs.jpcb.9b10531. Epub 2019 Dec 31.
Luteolin differs as a radical scavenger dramatically from apigenin in response to Cu(II) coordination despite a minor structural difference. Coordination of Cu(II) increases the radical scavenging efficiency of luteolin, especially at low pH, while decreases the efficiency of apigenin at both low and higher pH as studied by ABTS radical scavenging. Luteolin forms a 1:1 complex with Cu(II) binding to 4-carbonyl and 5-phenol for pH <6 and to 3',4'-catechol for pH >6. Apigenin forms a 1:2 complex independent of pH coordinated to 4-carbonyl and 5-hydroxylyl. Cu(II) coordinated to luteolin, as studied by pH jump stopped-flow, translocates with rate constants of 11.1 ± 0.3 s from 4,5 to 3',4' sites and 1.0 ± 0.1 s from 3',4' to 4,5 sites independent of Cu(II) concentration, pointing toward the dissociation of Cu(II) from an intermediate with two Cu(II) coordination as rate determining. 3',4'-Catechol is suggested to be a switch for Cu(II) translocation with deprotonation initiating 4,5 to 3',4' translocation and protonation initiating 3',4' to 4,5 translocation. For dicoordinated apigenin, the coordination symmetry balances an electron withdrawal effect of Cu(II) resulting in a decrease of phenol acidity and less radical scavenging efficiency compared to parent apigenin. Compared to that of parent luteolin, the radical scavenging rate of both 4,5 and 3',4' Cu(II)-coordinated luteolin is enhanced through increased phenol acidity by electron withdrawal by Cu(II), as confirmed by density functional theory (DFT) calculations. Coordination and translocation of Cu(II) accordingly increases the antioxidant activity of luteolin at pH approaching the physiological level and is discovered as a novel class of natural molecular machinery derived from plant polyphenols, which seems to be of importance for protection against oxidative stress.
木犀草素与芹菜素在响应 Cu(II)配位时,尽管结构上只有微小的差异,但作为自由基清除剂的效果却截然不同。Cu(II)的配位增加了木犀草素的自由基清除效率,特别是在低 pH 值下,而在低 pH 值和较高 pH 值下,芹菜素的效率都会降低,这是通过 ABTS 自由基清除实验研究得出的结果。木犀草素与 Cu(II)形成 1:1 配合物,在 pH <6 时与 4-羰基和 5-酚结合,在 pH >6 时与 3',4'-邻苯二酚结合。芹菜素独立于 pH 值形成 1:2 配合物,与 4-羰基和 5-羟乙基配位。通过 pH 跃变停流实验研究表明,Cu(II)与木犀草素配位后,以 11.1 ± 0.3 s 的速率从 4,5 位迁移到 3',4'位,以 1.0 ± 0.1 s 的速率从 3',4'位迁移到 4,5 位,与 Cu(II)浓度无关,表明 Cu(II)从具有两个 Cu(II)配位的中间物中解离出来是速率决定步骤。3',4'-邻苯二酚被认为是 Cu(II)迁移的开关,去质子化引发 4,5 位到 3',4'位的迁移,质子化引发 3',4'位到 4,5 位的迁移。对于二配位的芹菜素,Cu(II)的配位对称性平衡了电子抽取效应,导致酚酸度降低,与母体芹菜素相比,自由基清除效率降低。与母体木犀草素相比,通过 Cu(II)的电子抽取作用增加了酚的酸度,从而增强了 4,5 和 3',4'位 Cu(II)配位的木犀草素的自由基清除速率,这通过密度泛函理论(DFT)计算得到了证实。因此,Cu(II)的配位和迁移增加了木犀草素在接近生理水平的 pH 值下的抗氧化活性,这是从植物多酚中发现的一种新型天然分子机制,这似乎对抵抗氧化应激具有重要意义。