Suppr超能文献

协变量辅助主回归用于协方差矩阵结果。

Covariate Assisted Principal regression for covariance matrix outcomes.

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA and Department of Biostatistics, Indiana University School of Medicine, 410 W 10th St, Indianapolis, IN 46202, USA.

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.

出版信息

Biostatistics. 2021 Jul 17;22(3):629-645. doi: 10.1093/biostatistics/kxz057.

Abstract

In this study, we consider the problem of regressing covariance matrices on associated covariates. Our goal is to use covariates to explain variation in covariance matrices across units. As such, we introduce Covariate Assisted Principal (CAP) regression, an optimization-based method for identifying components associated with the covariates using a generalized linear model approach. We develop computationally efficient algorithms to jointly search for common linear projections of the covariance matrices, as well as the regression coefficients. Under the assumption that all the covariance matrices share identical eigencomponents, we establish the asymptotic properties. In simulation studies, our CAP method shows higher accuracy and robustness in coefficient estimation over competing methods. In an example resting-state functional magnetic resonance imaging study of healthy adults, CAP identifies human brain network changes associated with subject demographics.

摘要

在这项研究中,我们考虑了回归协方差矩阵与相关协变量的问题。我们的目标是使用协变量来解释单位间协方差矩阵的变化。因此,我们引入了协变量辅助主成分 (CAP) 回归,这是一种基于优化的方法,使用广义线性模型方法来识别与协变量相关的成分。我们开发了计算效率高的算法来共同搜索协方差矩阵的常见线性投影以及回归系数。在所有协方差矩阵共享相同特征分量的假设下,我们建立了渐近性质。在模拟研究中,我们的 CAP 方法在系数估计方面比竞争方法具有更高的准确性和稳健性。在一个健康成年人静息态功能磁共振成像研究的示例中,CAP 识别了与受试者人口统计学相关的人脑网络变化。

相似文献

1
Covariate Assisted Principal regression for covariance matrix outcomes.
Biostatistics. 2021 Jul 17;22(3):629-645. doi: 10.1093/biostatistics/kxz057.
2
Longitudinal regression of covariance matrix outcomes.
Biostatistics. 2024 Apr 15;25(2):385-401. doi: 10.1093/biostatistics/kxac045.
3
Principal regression for high dimensional covariance matrices.
Electron J Stat. 2021;15(2):4192-4235. doi: 10.1214/21-ejs1887. Epub 2021 Sep 14.
4
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae023.
5
Semiparametric partial common principal component analysis for covariance matrices.
Biometrics. 2021 Dec;77(4):1175-1186. doi: 10.1111/biom.13369. Epub 2020 Oct 10.
6
A whole-brain modeling approach to identify individual and group variations in functional connectivity.
Brain Behav. 2021 Jan;11(1):e01942. doi: 10.1002/brb3.1942. Epub 2020 Nov 18.
8
A random covariance model for bi-level graphical modeling with application to resting-state fMRI data.
Biometrics. 2021 Dec;77(4):1385-1396. doi: 10.1111/biom.13364. Epub 2020 Sep 11.
9
Functional Brain Network Classification With Compact Representation of SICE Matrices.
IEEE Trans Biomed Eng. 2015 Jun;62(6):1623-34. doi: 10.1109/TBME.2015.2399495. Epub 2015 Feb 4.
10
Linear mixed-effects modeling approach to FMRI group analysis.
Neuroimage. 2013 Jun;73:176-90. doi: 10.1016/j.neuroimage.2013.01.047. Epub 2013 Jan 30.

引用本文的文献

1
Covariance-on-covariance regression.
Biometrics. 2025 Jul 3;81(3). doi: 10.1093/biomtc/ujaf097.
2
Connectivity Regression.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf002.
3
Mediation analysis with graph mediator.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf004.
4
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae023.
6
Regression models for partially localized fMRI connectivity analyses.
Front Neuroimaging. 2023 Nov 13;2:1178359. doi: 10.3389/fnimg.2023.1178359. eCollection 2023.
7
Genetic underpinnings of brain structural connectome for young adults.
J Am Stat Assoc. 2023;118(543):1473-1487. doi: 10.1080/01621459.2022.2156349. Epub 2023 Feb 6.
8
Covariance regression with random forests.
BMC Bioinformatics. 2023 Jun 17;24(1):258. doi: 10.1186/s12859-023-05377-y.
9
Identifying covariate-related subnetworks for whole-brain connectome analysis.
Biostatistics. 2024 Apr 15;25(2):541-558. doi: 10.1093/biostatistics/kxad007.
10
Longitudinal regression of covariance matrix outcomes.
Biostatistics. 2024 Apr 15;25(2):385-401. doi: 10.1093/biostatistics/kxac045.

本文引用的文献

1
Multivariate Heteroscedasticity Models for Functional Brain Connectivity.
Front Neurosci. 2017 Dec 12;11:696. doi: 10.3389/fnins.2017.00696. eCollection 2017.
2
Differences in connectivity patterns between child and adolescent attention deficit hyperactivity disorder patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1127-1130. doi: 10.1109/EMBC.2016.7590902.
3
Sex and Age Effects of Functional Connectivity in Early Adulthood.
Brain Connect. 2016 Nov;6(9):700-713. doi: 10.1089/brain.2016.0429. Epub 2016 Sep 30.
4
Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer's disease.
Front Hum Neurosci. 2015 Sep 8;9:474. doi: 10.3389/fnhum.2015.00474. eCollection 2015.
6
Functional and effective connectivity: a review.
Brain Connect. 2011;1(1):13-36. doi: 10.1089/brain.2011.0008.
7
Functional network organization of the human brain.
Neuron. 2011 Nov 17;72(4):665-78. doi: 10.1016/j.neuron.2011.09.006.
8
Brain connectivity: gender makes a difference.
Neuroscientist. 2011 Oct;17(5):575-91. doi: 10.1177/1073858410386492. Epub 2011 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验