Suppr超能文献

基于 CBCT 的合成 MRI 辅助男性骨盆多器官分割。

Male pelvic multi-organ segmentation aided by CBCT-based synthetic MRI.

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America. Co-first author.

出版信息

Phys Med Biol. 2020 Feb 4;65(3):035013. doi: 10.1088/1361-6560/ab63bb.

Abstract

To develop an automated cone-beam computed tomography (CBCT) multi-organ segmentation method for potential CBCT-guided adaptive radiation therapy workflow. The proposed method combines the deep leaning-based image synthesis method, which generates magnetic resonance images (MRIs) with superior soft-tissue contrast from on-board setup CBCT images to aid CBCT segmentation, with a deep attention strategy, which focuses on learning discriminative features for differentiating organ margins. The whole segmentation method consists of 3 major steps. First, a cycle-consistent adversarial network (CycleGAN) was used to estimate a synthetic MRI (sMRI) from CBCT images. Second, a deep attention network was trained based on sMRI and its corresponding manual contours. Third, the segmented contours for a query patient was obtained by feeding the patient's CBCT images into the trained sMRI estimation and segmentation model. In our retrospective study, we included 100 prostate cancer patients, each of whom has CBCT acquired with prostate, bladder and rectum contoured by physicians with MRI guidance as ground truth. We trained and tested our model with separate datasets among these patients. The resulting segmentations were compared with physicians' manual contours. The Dice similarity coefficient and mean surface distance indices between our segmented and physicians' manual contours (bladder, prostate, and rectum) were 0.95  ±  0.02, 0.44  ±  0.22 mm, 0.86  ±  0.06, 0.73  ±  0.37 mm, and 0.91  ±  0.04, 0.72  ±  0.65 mm, respectively. We have proposed a novel CBCT-only pelvic multi-organ segmentation strategy using CBCT-based sMRI and validated its accuracy against manual contours. This technique could provide accurate organ volume for treatment planning without requiring MR images acquisition, greatly facilitating routine clinical workflow.

摘要

为了开发一种自动化的锥形束 CT(CBCT)多器官分割方法,以适应潜在的 CBCT 引导自适应放射治疗工作流程。该方法结合了基于深度学习的图像合成方法,该方法从机载设置的 CBCT 图像生成具有卓越软组织对比度的磁共振图像(MRI),以辅助 CBCT 分割,以及一种深度注意策略,该策略专注于学习区分器官边界的鉴别特征。整个分割方法由 3 个主要步骤组成。首先,使用循环一致性对抗网络(CycleGAN)从 CBCT 图像估计合成 MRI(sMRI)。其次,基于 sMRI 和其相应的手动轮廓训练深度注意网络。第三,通过将患者的 CBCT 图像输入到训练有素的 sMRI 估计和分割模型中,获得查询患者的分割轮廓。在我们的回顾性研究中,我们纳入了 100 例前列腺癌患者,每位患者均接受了前列腺、膀胱和直肠的 CBCT 扫描,这些扫描由有 MRI 引导的医生进行轮廓勾画作为金标准。我们使用这些患者中的独立数据集对我们的模型进行了训练和测试。将生成的分割结果与医生的手动轮廓进行比较。我们分割结果与医生的手动轮廓(膀胱、前列腺和直肠)之间的 Dice 相似系数和平均表面距离指数分别为 0.95 ± 0.02、0.44 ± 0.22 毫米、0.86 ± 0.06、0.73 ± 0.37 毫米和 0.91 ± 0.04、0.72 ± 0.65 毫米。我们提出了一种新的基于 CBCT 的骨盆多器官分割策略,使用基于 CBCT 的 sMRI,并通过与手动轮廓的对比验证了其准确性。这项技术可以在不要求获取 MRI 图像的情况下,为治疗计划提供准确的器官体积,极大地简化了常规临床工作流程。

相似文献

1
Male pelvic multi-organ segmentation aided by CBCT-based synthetic MRI.
Phys Med Biol. 2020 Feb 4;65(3):035013. doi: 10.1088/1361-6560/ab63bb.
2
Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network.
Radiother Oncol. 2019 Dec;141:192-199. doi: 10.1016/j.radonc.2019.09.028. Epub 2019 Oct 17.
3
Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy.
Med Phys. 2020 Aug;47(8):3415-3422. doi: 10.1002/mp.14196. Epub 2020 May 11.
4
CT prostate segmentation based on synthetic MRI-aided deep attention fully convolution network.
Med Phys. 2020 Feb;47(2):530-540. doi: 10.1002/mp.13933. Epub 2019 Dec 3.
5
A novel approach for establishing benchmark CBCT/CT deformable image registrations in prostate cancer radiotherapy.
Phys Med Biol. 2013 Nov 21;58(22):8077-97. doi: 10.1088/0031-9155/58/22/8077. Epub 2013 Oct 31.
8
Male pelvic CT multi-organ segmentation using synthetic MRI-aided dual pyramid networks.
Phys Med Biol. 2021 Apr 16;66(8). doi: 10.1088/1361-6560/abf2f9.
10
Combining prior day contours to improve automated prostate segmentation.
Med Phys. 2013 Feb;40(2):021722. doi: 10.1118/1.4789484.

引用本文的文献

2
[Advances in low-dose cone-beam computed tomography image reconstruction methods based on deep learning].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Jun 25;42(3):635-642. doi: 10.7507/1001-5515.202409021.
4
Artificial intelligence for treatment delivery: image-guided radiotherapy.
Strahlenther Onkol. 2025 Mar;201(3):283-297. doi: 10.1007/s00066-024-02277-9. Epub 2024 Aug 13.
5
On-board synthetic 4D MRI generation from 4D CBCT for radiotherapy of abdominal tumors: A feasibility study.
Med Phys. 2024 Dec;51(12):9194-9206. doi: 10.1002/mp.17347. Epub 2024 Aug 13.
7
High-resolution 3T to 7T ADC map synthesis with a hybrid CNN-transformer model.
Med Phys. 2024 Jun;51(6):4380-4388. doi: 10.1002/mp.17079. Epub 2024 Apr 17.
8
Bladder Cancer and Artificial Intelligence: Emerging Applications.
Urol Clin North Am. 2024 Feb;51(1):63-75. doi: 10.1016/j.ucl.2023.07.002. Epub 2023 Aug 25.
9
Deep learning in MRI-guided radiation therapy: A systematic review.
J Appl Clin Med Phys. 2024 Feb;25(2):e14155. doi: 10.1002/acm2.14155. Epub 2023 Sep 15.

本文引用的文献

1
Pseudo CT Estimation from MRI Using Patch-based Random Forest.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10133. doi: 10.1117/12.2253936.
2
MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks.
Med Phys. 2019 Aug;46(8):3565-3581. doi: 10.1002/mp.13617. Epub 2019 Jun 12.
3
Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net.
Med Phys. 2019 Jul;46(7):3194-3206. doi: 10.1002/mp.13577. Epub 2019 May 29.
5
Improvements in CBCT Image Quality Using a Novel Iterative Reconstruction Algorithm: A Clinical Evaluation.
Adv Radiat Oncol. 2019 Jan 10;4(2):390-400. doi: 10.1016/j.adro.2018.12.003. eCollection 2019 Apr-Jun.
6
Automatic multiorgan segmentation in thorax CT images using U-net-GAN.
Med Phys. 2019 May;46(5):2157-2168. doi: 10.1002/mp.13458. Epub 2019 Mar 22.
9
Fully automated organ segmentation in male pelvic CT images.
Phys Med Biol. 2018 Dec 14;63(24):245015. doi: 10.1088/1361-6560/aaf11c.
10
Learning-based CBCT correction using alternating random forest based on auto-context model.
Med Phys. 2019 Feb;46(2):601-618. doi: 10.1002/mp.13295. Epub 2018 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验