Suppr超能文献

多参数定量及纹理分析的F-FDG PET/CT用于原发性恶性肿瘤分级鉴别

Multiparametric quantitative and texture F-FDG PET/CT analysis for primary malignant tumour grade differentiation.

作者信息

Novikov Mykola

机构信息

Israeli Oncologic Hospital LISOD, 27 Malyshko str., Pliuty, Obuhovskiy district, Kyiv region, 08720, Ukraine.

出版信息

Eur Radiol Exp. 2019 Dec 18;3(1):48. doi: 10.1186/s41747-019-0124-3.

Abstract

BACKGROUND

F-FDG positron emission tomography/computed tomography (PET/CT) is a successfully used imaging modality in oncology. The aim of the study was to investigate a connection of epithelial tumour differentiation grade with both semiquantitative and quantitative metabolic PET data focusing on creation of multiparametric model of tumour grade prediction utilising both standardised uptake value-based and texture-based F-FDG PET parameters and to investigate an influence of different image segmentation techniques on these parameters and modelling.

METHODS

F-FDG PET/CT data from 84 patients with epithelial malignant tumours was retrospectively analysed to create sets of both conventional semiquantitative (based on standardised uptake values), volumetric, and quantitative texture metabolic parameters of primary tumours with four different segmentation techniques.

RESULTS

Most of the calculated volumetric and texture parameters showed to be influenced by segmentation technique. There was no significant difference in values of only three parameters, in all four segmentation methods: homogeneity, energy, and sphericity. Almost every extracted parameter in all segmentation technique subsets showed significant ability to discriminate individual tumour grade versus the subset of remaining two tumour grades. No parameters were able to discriminate all three tumour grades separately simultaneously or without the overlapping of threshold values. Group method of data handling (GMDH) modelling included all the above-mentioned extracted parameters. The highest value to discriminate tumour grade was achieved using ITK-SNAP segmentation, with an accuracy ranging from 91 to 100%.

CONCLUSIONS

Multiparametric modelling with GMDH utilising both semiquantitative and quantitative texture metabolic PET parameters seems to be an interesting tool for non-invasive malignant epithelial tumours grade differentiation.

摘要

背景

F-FDG正电子发射断层扫描/计算机断层扫描(PET/CT)是肿瘤学中一种成功应用的成像方式。本研究的目的是探讨上皮性肿瘤分化程度与半定量和定量代谢PET数据之间的联系,重点是利用基于标准化摄取值和基于纹理的F-FDG PET参数创建肿瘤分级预测的多参数模型,并研究不同图像分割技术对这些参数和建模的影响。

方法

回顾性分析84例上皮性恶性肿瘤患者的F-FDG PET/CT数据,采用四种不同的分割技术创建原发性肿瘤的常规半定量(基于标准化摄取值)、体积和定量纹理代谢参数集。

结果

大多数计算出的体积和纹理参数显示受分割技术影响。在所有四种分割方法中,只有三个参数的值没有显著差异:均匀性、能量和球形度。在所有分割技术子集中,几乎每个提取的参数都显示出显著的能力来区分单个肿瘤分级与其余两个肿瘤分级的子集。没有参数能够同时或在阈值不重叠的情况下分别区分所有三个肿瘤分级。数据处理分组方法(GMDH)建模包括上述所有提取的参数。使用ITK-SNAP分割实现了区分肿瘤分级的最高值,准确率在91%至100%之间。

结论

利用半定量和定量纹理代谢PET参数的GMDH多参数建模似乎是一种用于非侵入性恶性上皮性肿瘤分级分化的有趣工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf0/6920272/853ae8f81a5b/41747_2019_124_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验