Center for Drug Evaluation and Research, Food and Drug Administration, White Oak, Maryland.
Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
Am J Prev Med. 2020 Jan;58(1):e11-e19. doi: 10.1016/j.amepre.2019.08.029.
A considerable burden of prescription and illicit opioid-related mortality and morbidity in the U.S. is attributable to potentially unnecessary or excessive opioid prescribing, and co-prescribing gabapentinoids may increase risk of harm. Data are needed regarding physician and patient characteristics associated with opioid analgesic and opioid analgesic-gabapentinoid co-prescriptions to elucidate targets for reducing preventable harm.
Multiple logistic regression was utilized to examine patient and physician predictors of opioid analgesic prescriptions and opioid analgesic-gabapentinoid co-prescriptions in adult noncancer patients using the National Ambulatory Medical Care Survey 2015 public use data set. Potential predictors were selected based on literature review, clinical relevance, and random forest machine learning algorithms.
Among the 11.8% (95% CI=9.8%, 13.9%) of medical encounters with an opioid prescription, 16.2% (95% CI=12.6%, 19.8%) had a gabapentinoid co-prescription. Among all gabapentinoid encounters, 40.7% (95% CI=32.6%, 48.7%) had an opioid co-prescription. Predictors of opioid prescription included arthritis (OR=1.87, 95% CI=1.30, 2.69). Predictors of new opioid prescription included physician status as an independent contractor (OR=3.67, 95% CI=1.38, 9.81) or part owner of the practice (OR=3.34, 95% CI=1.74, 6.42). Predictors of opioid-gabapentinoid co-prescription included patient age (peaking at age 55-64 years; OR=35.67, 95% CI=4.32, 294.43).
Predictors of opioid analgesic prescriptions with and without gabapentinoid co-prescriptions were identified. These predictors can help inform and reinforce (e.g., educational) interventions seeking to reduce preventable harm, help identify populations for elucidating opioid-gabapentinoid risk-benefit profiles, and provide a baseline for evaluating subsequent public health measures.
在美国,相当一部分与处方和非法阿片类药物相关的死亡和发病与潜在的不必要或过度开具阿片类药物有关,而同时开具加巴喷丁类药物可能会增加伤害风险。需要了解与阿片类镇痛药和阿片类镇痛药-加巴喷丁类药物同时开具相关的医生和患者特征,以阐明减少可预防伤害的目标。
利用 2015 年全国门诊医疗调查公共使用数据集,采用多项逻辑回归分析,检查成年非癌症患者阿片类镇痛药处方和阿片类镇痛药-加巴喷丁类药物同时开具的患者和医生预测因素。根据文献综述、临床相关性和随机森林机器学习算法选择潜在的预测因素。
在开具阿片类药物处方的 11.8%(95%置信区间=9.8%,13.9%)的医疗就诊中,16.2%(95%置信区间=12.6%,19.8%)同时开具了加巴喷丁类药物。在所有加巴喷丁类药物就诊中,有 40.7%(95%置信区间=32.6%,48.7%)同时开具了阿片类药物。阿片类药物处方的预测因素包括关节炎(OR=1.87,95%置信区间=1.30,2.69)。新的阿片类药物处方的预测因素包括医生为独立承包商(OR=3.67,95%置信区间=1.38,9.81)或实践的部分所有者(OR=3.34,95%置信区间=1.74,6.42)。阿片类药物-加巴喷丁类药物同时开具的预测因素包括患者年龄(55-64 岁年龄组达到峰值;OR=35.67,95%置信区间=4.32,294.43)。
确定了开具阿片类镇痛药处方和同时开具加巴喷丁类药物的预测因素。这些预测因素可以帮助提供信息和加强(例如,教育)干预措施,以减少可预防的伤害,帮助确定阐明阿片类药物-加巴喷丁类药物风险-效益特征的人群,并为评估随后的公共卫生措施提供基线。