Suppr超能文献

在假定的 copula 下,竞争风险的边际风险模型与子分布风险模型的比较。

Comparison of the marginal hazard model and the sub-distribution hazard model for competing risks under an assumed copula.

作者信息

Emura Takeshi, Shih Jia-Han, Ha Il Do, Wilke Ralf A

机构信息

Graduate Institute of Statistics, National Central University, Taiwan.

Department of Statistics, Pukyong National University, South Korea.

出版信息

Stat Methods Med Res. 2020 Aug;29(8):2307-2327. doi: 10.1177/0962280219892295. Epub 2019 Dec 22.

Abstract

For the analysis of competing risks data, three different types of hazard functions have been considered in the literature, namely the cause-specific hazard, the sub-distribution hazard, and the marginal hazard function. Accordingly, medical researchers can fit three different types of the Cox model to estimate the effect of covariates on each of the hazard function. While the relationship between the cause-specific hazard and the sub-distribution hazard has been extensively studied, the relationship to the marginal hazard function has not yet been analyzed due to the difficulties related to non-identifiability. In this paper, we adopt an assumed copula model to deal with the model identifiability issue, making it possible to establish a relationship between the sub-distribution hazard and the marginal hazard function. We then compare the two methods of fitting the Cox model to competing risks data. We also extend our comparative analysis to competing risks data that are frequently used in medical studies. To facilitate the numerical comparison, we implement the computing algorithm for marginal Cox regression with clustered competing risks data in the R package and check its performance via simulations. For illustration, we analyze two survival datasets from lung cancer and bladder cancer patients.

摘要

对于竞争风险数据的分析,文献中考虑了三种不同类型的风险函数,即特定病因风险函数、子分布风险函数和边际风险函数。因此,医学研究人员可以拟合三种不同类型的Cox模型,以估计协变量对每个风险函数的影响。虽然特定病因风险函数和子分布风险函数之间的关系已得到广泛研究,但由于与不可识别性相关的困难,与边际风险函数的关系尚未得到分析。在本文中,我们采用一种假定的copula模型来处理模型可识别性问题,从而有可能建立子分布风险函数和边际风险函数之间的关系。然后,我们比较了将Cox模型拟合到竞争风险数据的两种方法。我们还将比较分析扩展到医学研究中常用的竞争风险数据。为便于进行数值比较,我们在R包中实现了用于聚类竞争风险数据的边际Cox回归的计算算法,并通过模拟检查其性能。为作说明,我们分析了来自肺癌和膀胱癌患者的两个生存数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验