State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
Clin Pharmacol Ther. 2020 Jun;107(6):1373-1382. doi: 10.1002/cpt.1750. Epub 2020 Feb 28.
Drug safety is a severe clinical pharmacology and toxicology problem that has caused immense medical and social burdens every year. Regretfully, a reproducible method to assess drug safety systematically and quantitatively is still missing. In this study, we developed an advanced machine learning model for de novo drug safety assessment by solving the multilayer drug-gene-adverse drug reaction (ADR) interaction network. For the first time, the drug safety was assessed in a broad landscape of 1,156 distinct ADRs. We also designed a parameter ToxicityScore to quantify the overall drug safety. Moreover, we determined association strength for every 3,807,631 gene-ADR interactions, which clues mechanistic exploration of ADRs. For convenience, we deployed the model as a web service ADRAlert-gene at http://www.bio-add.org/ADRAlert/. In summary, this study offers insights into prioritizing safe drug therapy. It helps reduce the attrition rate of new drug discovery by providing a reliable ADR profile in the early preclinical stage.
药物安全是一个严重的临床药理学和毒理学问题,每年都造成巨大的医疗和社会负担。遗憾的是,目前仍然缺乏一种可重现的方法来系统和定量地评估药物安全性。在这项研究中,我们通过解决多层药物-基因-药物不良反应(ADR)相互作用网络,开发了一种用于药物新安全性评估的先进机器学习模型。我们首次在 1156 种不同的 ADR 广阔景观中评估了药物安全性。我们还设计了一个参数 ToxicityScore 来量化药物的整体安全性。此外,我们确定了每 3807631 个基因-ADR 相互作用的关联强度,这为 ADR 的机制探索提供了线索。为方便起见,我们将模型作为一个名为 ADRAlert-gene 的网络服务部署在 http://www.bio-add.org/ADRAlert/。总之,这项研究为优先考虑安全的药物治疗提供了思路。它通过在早期临床前阶段提供可靠的 ADR 概况,有助于降低新药发现的淘汰率。