Suppr超能文献

锥形束 CT 和 CT 全影像深度分割算法在男性骨盆中的临床评估

Clinical evaluation of a full-image deep segmentation algorithm for the male pelvis on cone-beam CT and CT.

机构信息

Varian Medical Systems, Palo Alto, United States.

Varian Medical Systems, Palo Alto, United States.

出版信息

Radiother Oncol. 2020 Apr;145:1-6. doi: 10.1016/j.radonc.2019.11.021. Epub 2019 Dec 20.

Abstract

AIM

The segmentation of organs from a CT scan is a time-consuming task, which is one hindrance for adaptive radiation therapy. Through deep learning, it is possible to automatically delineate organs. Metrics like dice score do not necessarily represent the impact for clinical practice. Therefore, a clinical evaluation of the deep neural network is needed to verify the segmentation quality.

METHODS

In this work, a novel deep neural network is trained on 300 CT and 300 artificially generated pseudo CBCTs to segment bladder, prostate, rectum and seminal vesicles from CT and cone beam CT scans. The model is evaluated on 45 CBCT and 5 CT scans through a clinical review performed by three different clinics located in Europe, North America and Australia.

RESULTS

The deep learning model is scored either equally good (prostate and seminal vesicles) or better (bladder and rectum) than the structures from routine clinical practice. No or minor corrections are required for 97.5% of the segmentations of the bladder, 91.5% of the prostate, 94% of the rectum and seminal vesicles. Overall, for 82.5% of the patients none of the organs need major corrections or a redraw.

CONCLUSION

This study shows that modern deep neural networks are capable of producing clinically applicable organ segmentation for the male pelvis. The model is able to produce acceptable structures as frequently as current clinical routine. Therefore, deep neural networks can simplify the clinical workflow by offering initial segmentations. The study further shows that to retain the clinicians' personal preferences a structure review and correction is necessary for structures both created by other clinicians and deep neural networks.

摘要

目的

从 CT 扫描中对器官进行分割是一项耗时的任务,这是自适应放射治疗的一个障碍。通过深度学习,可以自动勾画器官。像骰子评分这样的指标并不一定代表对临床实践的影响。因此,需要对深度神经网络进行临床评估,以验证分割质量。

方法

在这项工作中,使用一种新的深度神经网络对 300 个 CT 和 300 个人工生成的伪 CBCT 进行训练,以从 CT 和锥形束 CT 扫描中分割膀胱、前列腺、直肠和精囊。通过位于欧洲、北美和澳大利亚的三个不同诊所进行的临床评估,在 45 个 CBCT 和 5 个 CT 扫描上对模型进行评估。

结果

深度学习模型的评分与常规临床实践中的结构一样好(前列腺和精囊)或更好(膀胱和直肠)。对于膀胱的 97.5%、前列腺的 91.5%、直肠和精囊的 94%的分割,无需或只需进行少量修正。总体而言,对于 82.5%的患者,无需对任何器官进行重大修正或重新勾画。

结论

本研究表明,现代深度神经网络能够生成适用于男性骨盆的临床应用器官分割。该模型能够像当前临床常规一样频繁地生成可接受的结构。因此,深度神经网络可以通过提供初始分割来简化临床工作流程。该研究还表明,为了保留临床医生的个人偏好,对于其他临床医生和深度神经网络创建的结构,都需要进行结构审查和修正。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验