Department of Physics, Nanchang University, Nanchang 330031, China.
State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China.
Phys Rev E. 2019 Nov;100(5-1):052126. doi: 10.1103/PhysRevE.100.052126.
We consider the finite-time performance of a quantum Otto engine working between a hot squeezed and a cold thermal bath at inverse temperatures β_{h} and β_{c}(>β_{h}) with (k_{B}≡1)β=1/T. We derive the analytical expressions for work, efficiency, power, and power fluctuations, in which the squeezing parameter is involved. By optimizing the power output with respect to two frequencies, we derive the efficiency at maximum power as η_{mp}=(η_{C}^{gen})^{2}/[η_{C}^{gen}-(1-η_{C}^{gen})ln(1-η_{C}^{gen})], where the generalized Carnot efficiency η_{C}^{gen} in the high-temperature or small squeezing limit simplifies to an analytic function of squeezing parameter γ: η_{C}^{gen}=1-β_{h}/[β_{c}cosh(2γ)]. Within the context of irreversible thermodynamics, we demonstrate that the expression of efficiency at maximum power satisfies a general form derived from nonlinear steady state heat engines. We show that, the power fluctuations are considerably increased, although the engine efficiency is enhanced by squeezing.
我们考虑了在逆温度β_{h}和β_{c}(>β_{h})下,与(k_{B}≡1)β=1/T 的热压缩和冷热浴之间工作的量子奥托发动机的有限时间性能。我们推导出了工作、效率、功率和功率波动的解析表达式,其中涉及到压缩参数。通过相对于两个频率优化功率输出,我们推导出最大功率效率为η_{mp}=(η_{C}^{gen})^{2}/[η_{C}^{gen}-(1-η_{C}^{gen})ln(1-η_{C}^{gen})],其中高温或小压缩极限下的广义卡诺效率η_{C}^{gen}简化为压缩参数γ的解析函数:η_{C}^{gen}=1-β_{h}/[β_{c}cosh(2γ)]。在不可逆热力学的背景下,我们证明了最大功率效率的表达式满足从非线性稳态热机推导出的一般形式。我们表明,尽管压缩可以提高发动机效率,但功率波动会大大增加。