Department of Mechanical and Aerospace Engineering , University of Missouri , Columbia , Missouri 65211 , United States.
Department of Chemistry , University of Missouri , Columbia , Missouri 65211 , United States.
J Am Chem Soc. 2020 Jan 22;142(3):1475-1481. doi: 10.1021/jacs.9b11569. Epub 2020 Jan 8.
Herein, we report machine learning algorithms by training data sets from a set of both successful and failed experiments for studying the crystallization propensity of metal-organic nanocapsules (MONCs). Among a variety of studied machine learning algorithms, XGBoost affords the highest prediction accuracy of >90%. The derived chemical feature scores that determine importance of reaction parameters from the XGBoost model assist to identify synthesis parameters for successfully synthesizing new hierarchical structures of MONCs, showing superior performance to a well-trained chemist. This work demonstrates that the machine learning algorithms can assist the chemists to faster search for the optimal reaction parameters from many experimental variables, whose features are usually hidden in the high-dimensional space.
在此,我们报告了机器学习算法,这些算法通过对一系列成功和失败的实验数据集进行训练,用于研究金属有机纳米胶囊(MONC)的结晶倾向。在研究的各种机器学习算法中,XGBoost 提供了 >90%的最高预测准确性。从 XGBoost 模型中得出的化学特征得分确定了反应参数的重要性,有助于确定成功合成 MONC 新层次结构的合成参数,其性能优于经过良好训练的化学家。这项工作表明,机器学习算法可以帮助化学家更快地从许多实验变量中搜索最佳反应参数,这些变量的特征通常隐藏在高维空间中。