Suppr超能文献

所有深度学习架构都适用于即时超声吗?来自心脏影像分类模型的证据表明并非如此。

Are All Deep Learning Architectures Alike for Point-of-Care Ultrasound?: Evidence From a Cardiac Image Classification Model Suggests Otherwise.

机构信息

University of South Carolina School of Medicine, Columbia, South Carolina, USA.

Department of Emergency Medicine, St Francis Hospital, Columbus, Georgia, USA.

出版信息

J Ultrasound Med. 2020 Jun;39(6):1187-1194. doi: 10.1002/jum.15206. Epub 2019 Dec 24.

Abstract

OBJECTIVES

Little is known about optimal deep learning (DL) approaches for point-of-care ultrasound (POCUS) applications. We compared 6 popular DL architectures for POCUS cardiac image classification to determine whether an optimal DL architecture exists for future DL algorithm development in POCUS.

METHODS

We trained 6 convolutional neural networks (CNNs) with a range of complexities and ages (AlexNet, VGG-16, VGG-19, ResNet50, DenseNet201, and Inception-v4). Each CNN was trained by using images of 5 typical POCUS cardiac views. Images were extracted from 225 publicly available deidentified POCUS cardiac videos. A total of 750,018 individual images were extracted, with 90% used for model training and 10% for cross-validation. The training time and accuracy achieved were tracked. A real-world test of the algorithms was performed on a set of 125 completely new cardiac images. Descriptive statistics, Pearson R values, and κ values were calculated for each CNN.

RESULTS

Accuracy ranged from 96% to 85.6% correct for the 6 CNNs. VGG-16, one of the oldest and simplest CNNs, performed best at 96% correct with 232 minutes to train (R = 0.97; κ = 0.95; P < .00001). The worst-performing CNN was the newer DenseNet201, with 85.6% accuracy and 429 minutes to train (R = 0.92; κ = 0.82; P < .00001).

CONCLUSIONS

Six common image classification DL algorithms showed considerable variability in their accuracy and training time when trained and tested on identical data, suggesting that not all will perform optimally for POCUS DL applications. Contrary to well-established accuracies for CNNs, more modern and deeper algorithms yielded poorer results.

摘要

目的

关于在即时超声(POCUS)应用中进行深度学习(DL)的最佳方法知之甚少。我们比较了 6 种流行的用于 POCUS 心脏图像分类的深度学习架构,以确定是否存在适用于未来 POCUS 深度学习算法开发的最佳深度学习架构。

方法

我们使用范围广泛的复杂性和年龄的 6 种卷积神经网络(CNN)进行训练(AlexNet、VGG-16、VGG-19、ResNet50、DenseNet201 和 Inception-v4)。每个 CNN 均使用 5 种典型的 POCUS 心脏视图的图像进行训练。图像从 225 个公开的匿名 POCUS 心脏视频中提取。总共提取了 750,018 张图像,其中 90%用于模型训练,10%用于交叉验证。跟踪了训练时间和达到的准确性。在一组 125 张全新的心脏图像上对算法进行了真实测试。为每个 CNN 计算了描述性统计、Pearson R 值和κ值。

结果

6 个 CNN 的准确率范围为 96%至 85.6%。VGG-16 是最古老和最简单的 CNN 之一,以 96%的准确率(训练时间为 232 分钟)表现最佳(R = 0.97;κ = 0.95;P < .00001)。表现最差的 CNN 是较新的 DenseNet201,准确率为 85.6%,训练时间为 429 分钟(R = 0.92;κ = 0.82;P < .00001)。

结论

在使用相同数据进行训练和测试时,6 种常见的图像分类深度学习算法在准确性和训练时间方面表现出相当大的差异,这表明并非所有算法都能针对 POCUS 深度学习应用实现最佳性能。与 CNN 已确立的准确性相反,更现代和更深层次的算法产生了较差的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验