Suppr超能文献

使用道路类型替代自行车空间网络模型中的预测机动化交通流量。

Using road class as a replacement for predicted motorized traffic flow in spatial network models of cycling.

机构信息

Department of Geography and Planning Cardiff University, King Edward VII Avenue, Cardiff, CF10 3WA, United Kingdom.

Sustainable Places Research Institute, Cardiff University, 33 Park Place, Cardiff, CF10 3BA, United Kingdom.

出版信息

Sci Rep. 2019 Dec 23;9(1):19724. doi: 10.1038/s41598-019-55669-8.

Abstract

Recent years have seen renewed policy interest in urban cycling due to the negative impacts of motorized traffic, obesity and emissions. Simulating bicycle mode share and flows can help decide where to build new infrastructure for maximum impact, though modelling budgets are limited. The four step model used for vehicles is not typically used for this task as, aside from the expense of use, it is designed around too-large zone sizes and a simplified network. Alternative approaches are based on aggregate statistics or spatial network analysis, the latter being necessary to create a model sufficiently sensitive to infrastructure location, although still requiring considerable modelling effort due to the need to simulate motor vehicle flows in order to account for the effect of motorized traffic in disincentivising cycling. The model presented uses an existing spatial network analysis methodology on an unsimplified network, but simplifies the analysis by substituting explicit prediction of motorized traffic flow with an alternative based on road classification. The method offers a large reduction in modelling effort, but nonetheless gives model correlation with actual cycling flows (R = 0.85) broadly comparable to a previous model with motorized traffic fully simulated (R = 0.78).

摘要

近年来,由于机动交通、肥胖和排放等问题的负面影响,城市自行车出行重新引起了政策关注。模拟自行车分担率和流量可以帮助确定在哪里建设新的基础设施以产生最大影响,尽管建模预算有限。用于车辆的四步模型通常不用于此任务,因为除了使用费用外,它是围绕过大的区域大小和简化的网络设计的。替代方法基于汇总统计数据或空间网络分析,后者对于创建对基础设施位置足够敏感的模型是必要的,尽管仍然需要大量的建模工作,因为需要模拟机动车流以说明机动车交通对自行车出行的抑制作用。所提出的模型在未经简化的网络上使用现有的空间网络分析方法,但通过用基于道路分类的替代方法替代对机动车交通流量的显式预测来简化分析。该方法大大减少了建模工作,但模型与实际自行车流量的相关性(R=0.85)与以前完全模拟机动车交通的模型(R=0.78)大致相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验