Zhu Qingming, Qiu Ciyuan, He Yu, Zhang Yong, Su Yikai
Opt Express. 2019 Dec 9;27(25):36625-36636. doi: 10.1364/OE.27.036625.
We propose and experimentally demonstrate a self-homodyne locking method for a silicon microring resonator (MRR). The device employs a self-homodyne detection structure and consists of a tunable MRR with two directional couplers along the ring for monitoring, two phase shifters to calibrate the phase difference between the two monitored optical signals, and a Y-branch to combine the two signals. A single photodetector is used to detect the output power of the Y-branch. If the MRR is on resonance, a destructive interference occurs in the Y-branch, therefore the monitored photocurrent is minimized. By using such a device structure and the homodyne detection scheme, the MRR with a Q factor of 1.9 × 10 can be accurately locked to the signal wavelength, and the locking process is insensitive to input power variation. The wavelength locking range is larger than one free spectral range (FSR) of 6 nm, and the locking errors are ≤0.015 nm.