An Byeong-Seon, Kwon Yena, Oh Jin-Su, Lee Miji, Pae Sangwoo, Yang Cheol-Woong
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
Samsung Foundry Business, Samsung Electronics, GiHeung, 17113, Korea.
Sci Rep. 2019 Dec 27;9(1):20132. doi: 10.1038/s41598-019-56796-y.
An amorphous TaMnO layer with 1.0 nm thickness was studied as an alternative Cu diffusion barrier for advanced interconnect. The thermal and electrical stabilities of the 1.0-nm-thick TaMnO barrier were evaluated by transmission electron microscopy (TEM) and current density-electric field (J-E) and capacitance-voltage (C-V) measurements after annealing at 400 °C for 10 h. X-ray photoelectron spectroscopy revealed the chemical characteristics of the TaMnO layer, and a tape peeling test showed that the TaMnO barrier between the Cu and SiO layers provided better adhesion compared to the sample without the barrier. TEM observation and line profiling measurements in energy-dispersive X-ray spectroscopy after thermal annealing revealed that Cu diffusion was prevented by the TaMnO barrier. Also, the J-E and C-V measurements of the fabricated metal-oxide-semiconductor sample showed that the TaMnO barrier significantly improved the electrical stability of the Cu interconnect. Our results indicate that the 1.0-nm-thick TaMnO barrier efficiently prevented Cu diffusion into the SiO layer and enhanced the thermal and electrical stability of the Cu interconnect. The improved performance of the TaMnO barrier can be attributed to the microstructural stability achieved by forming ternary Ta-Mn-O film with controlled Ta/Mn atomic ratio. The chemical composition can affect the atomic configuration and density of the Ta-Mn-O film, which are closely related to the diffusion behavior. Therefore, the 1.0-nm-thick amorphous TaMnO barrier is a promising Cu diffusion barrier for advanced interconnect technology.
研究了厚度为1.0纳米的非晶TaMnO层作为先进互连中替代铜扩散阻挡层的性能。在400°C下退火10小时后,通过透射电子显微镜(TEM)、电流密度-电场(J-E)和电容-电压(C-V)测量对1.0纳米厚的TaMnO阻挡层的热稳定性和电稳定性进行了评估。X射线光电子能谱揭示了TaMnO层的化学特性,胶带剥离试验表明,与没有阻挡层的样品相比,Cu和SiO层之间的TaMnO阻挡层具有更好的附着力。热退火后的TEM观察和能量色散X射线光谱中的线轮廓测量表明,TaMnO阻挡层阻止了Cu的扩散。此外,所制备的金属氧化物半导体样品的J-E和C-V测量表明,TaMnO阻挡层显著提高了Cu互连的电稳定性。我们的结果表明,1.0纳米厚的TaMnO阻挡层有效地阻止了Cu扩散到SiO层中,并提高了Cu互连的热稳定性和电稳定性。TaMnO阻挡层性能的改善可归因于通过形成具有可控Ta/Mn原子比的三元Ta-Mn-O薄膜实现的微观结构稳定性。化学成分会影响Ta-Mn-O薄膜的原子构型和密度,这与扩散行为密切相关。因此,1.0纳米厚的非晶TaMnO阻挡层是先进互连技术中一种很有前景的Cu扩散阻挡层。