Suppr超能文献

群体样本中的近亲:遗传资源鉴定的后果评估。

Close relatives in population samples: Evaluation of the consequences for genetic stock identification.

机构信息

Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden.

Marine Scotland Science, Freshwater Fisheries Laboratory, Pitlochry, UK.

出版信息

Mol Ecol Resour. 2020 Mar;20(2):498-510. doi: 10.1111/1755-0998.13131. Epub 2020 Jan 27.

Abstract

Determining the origin of individuals in mixed population samples is key in many ecological, conservation and management contexts. Genetic data can be analyzed using genetic stock identification (GSI), where the origin of single individuals is determined using Individual Assignment (IA) and population proportions are estimated with Mixed Stock Analysis (MSA). In such analyses, allele frequencies in a reference baseline are required. Unknown individuals or mixture proportions are assigned to source populations based on the likelihood that their multilocus genotypes occur in a particular baseline sample. Representative sampling of populations included in a baseline is important when designing and performing GSI. Here, we investigate the effects of family sampling on GSI, using both simulated and empirical genotypes for Atlantic salmon (Salmo salar). We show that nonrepresentative sampling leading to inclusion of close relatives in a reference baseline may introduce bias in estimated proportions of contributing populations in a mixed sample, and increases the amount of incorrectly assigned individual fish. Simulated data further show that the induced bias increases with increasing family structure, but that it can be partly mitigated by increased baseline population sample sizes. Results from standard accuracy tests of GSI (using only a reference baseline and/or self-assignment) gave a false and elevated indication of the baseline power and accuracy to identify stock proportions and individuals. These findings suggest that family structure in baseline population samples should be quantified and its consequences evaluated, before carrying out GSI.

摘要

确定混合群体样本中个体的起源在许多生态学、保护和管理背景中至关重要。可以使用遗传谱系鉴定(GSI)分析遗传数据,其中使用个体分配(IA)确定单个个体的起源,并使用混合谱系分析(MSA)估计种群比例。在这种分析中,需要参考基准中的等位基因频率。未知个体或混合比例根据其多位点基因型在特定基线样本中出现的可能性被分配到源种群。在设计和执行 GSI 时,包含在基线中的种群的代表性抽样很重要。在这里,我们使用大西洋鲑(Salmo salar)的模拟和经验基因型研究了家庭抽样对 GSI 的影响。我们表明,由于代表性抽样导致近亲被纳入参考基线,可能会导致混合样本中贡献种群的估计比例产生偏差,并增加错误分配个体鱼类的数量。模拟数据进一步表明,诱导偏差随着家族结构的增加而增加,但通过增加基线种群样本量可以部分减轻。GSI 的标准准确性测试(仅使用参考基线和/或自我分配)的结果错误地表明了基线识别种群比例和个体的能力和准确性。这些发现表明,在进行 GSI 之前,应该量化基线种群样本中的家族结构,并评估其后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc28/7065253/c24fb07f1e84/MEN-20-498-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验