Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India; Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India.
Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India; Centres with Potential for Excellence in Particular Areas (CPEPA, UGC), Centre for "Electrophysiology & Neuroimaging Studies Including Mathematical Modeling" India.
Brain Res Bull. 2020 Mar;156:131-140. doi: 10.1016/j.brainresbull.2019.12.013. Epub 2019 Dec 28.
MPTP produces oxidative stress, damages niagrostriatal dopaminergic neurons and develops Parkinsonism in rodents. Due to paucity of information, the thyroidal status in brain regions and peripheral tissues during different post-treatment days in MPTP-induced mice had been executed in the present study. MPTP depleted tyrosine hydroxylase protein expressions that signify the dopaminergic neuronal damage in substantia nigra. MPTP elevated ROS formation differentially in brain regions (cerebral cortex, hippocampus, substantia nigra) with maximal elevation at hippocampus. The changes in thyroid hormone (T and T) levels indicate that brain regions might combat the adverse situation by keeping the levels of thyroid hormones either unchanged or in the elevated conditions in the latter phases (day-3 and day-7), apart from the depletion of thyroid hormones in certain brain regions (T in SN and hippocampus, T in hippocampus) as the immediate (day-1) effects after MPTP treatment. MPTP caused alterations of cellular morphology, RNA:Protein ratio and TPO protein expression, concomitantly depleted TPO mRNA expression and elevated TSH levels in the thyroid gland. Although T levels changed differentially, T levels remained unaltered in thyroid gland throughout the post-treatment days. Results have been discussed mentioning the putative role of T and TSH in apoptosis and/or proliferation/differentiation of thyrocytes. In blood, T levels remained unchanged while the changes in T and TSH levels did not signify the clinical feature of hypo/hyperthyroidism of animals. In the pituitary, both T and T levels remained elevated where TSH differentially altered (elevated followed by depletion) during post-treatment days. Notably, T, T and TSH levels did not alter in hypothalamus except initial (day-1) depletion of the T level. Therefore, the feedback control mechanism of hypothalamo-pituitary-blood-thyroid-axis failed to occur after MPTP treatment. Overall, MPTP altered thyroidal status in the brain and peripheral tissues while both events might occur in isolation as well.
MPTP 会产生氧化应激,损伤黑质纹状体多巴胺能神经元,并在啮齿动物中引发帕金森病。由于信息不足,本研究检测了 MPTP 诱导的小鼠在不同治疗后天数中大脑区域和外周组织的甲状腺状态。MPTP 会耗尽酪氨酸羟化酶蛋白表达,这表明黑质中的多巴胺能神经元受损。MPTP 会以海马区升高最为明显的方式,使大脑区域的 ROS 形成产生差异。甲状腺激素(T 和 T)水平的变化表明,大脑区域可能会通过保持甲状腺激素水平不变或在后期阶段(第 3 天和第 7 天)升高来应对不利情况,除了某些大脑区域(SN 和海马区的 T、海马区的 T)中的甲状腺激素耗竭外,这是 MPTP 治疗后的即刻(第 1 天)效应。MPTP 导致甲状腺形态改变、RNA:蛋白质比值和 TPO 蛋白表达改变,同时耗竭 TPO mRNA 表达并升高甲状腺中的 TSH 水平。尽管 T 水平发生了变化,但甲状腺中的 T 水平在整个治疗后期间保持不变。结果已讨论了 T 和 TSH 在甲状腺细胞凋亡和/或增殖/分化中的潜在作用。在血液中,T 水平保持不变,而 T 和 TSH 水平的变化并不代表动物的低/甲状腺功能亢进的临床特征。在垂体中,T 和 T 水平均升高,而 TSH 水平则在治疗后期间发生改变(先升高后耗竭)。值得注意的是,除了最初(第 1 天)T 水平的耗竭外,下丘脑的 T、T 和 TSH 水平没有改变。因此,MPTP 治疗后,下丘脑-垂体-血液-甲状腺轴的反馈控制机制未能发生。总体而言,MPTP 改变了大脑和外周组织中的甲状腺状态,而这两个事件也可能单独发生。