Suppr超能文献

光谱特征选择优化在水质估计中的应用。

Spectral Feature Selection Optimization for Water Quality Estimation.

机构信息

Department of Geomatics, National Cheng Kung University, Tainan City 701, Taiwan.

Institute of Geography, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Vietnam.

出版信息

Int J Environ Res Public Health. 2019 Dec 30;17(1):272. doi: 10.3390/ijerph17010272.

Abstract

The spatial heterogeneity and nonlinearity exhibited by bio-optical relationships in turbid inland waters complicate the retrieval of chlorophyll-a (Chl-a) concentration from multispectral satellite images. Most studies achieved satisfactory Chl-a estimation and focused solely on the spectral regions from near-infrared (NIR) to red spectral bands. However, the optical complexity of turbid waters may vary with locations and seasons, which renders the selection of spectral bands challenging. Accordingly, this study proposes an optimization process utilizing available spectral models to achieve optimal Chl-a retrieval. The method begins with the generation of a set of feature candidates, followed by candidate selection and optimization. Each candidate links to a Chl-a estimation model, including two-band, three-band, and normalized different chlorophyll index models. Moreover, a set of selected candidates using available spectral bands implies an optimal composition of estimation models, which results in an optimal Chl-a estimation. Remote sensing images and in situ Chl-a measurements in Lake Kasumigaura, Japan, are analyzed quantitatively and qualitatively to evaluate the proposed method. Results indicate that the model outperforms related Chl-a estimation models. The root-mean-squared errors of the Chl-a concentration obtained by the resulting model (OptiM-3) improve from 11.95 mg · m - 3 to 6.37 mg · m - 3 , and the Pearson's correlation coefficients between the predicted and in situ Chl- a improve from 0.56 to 0.89.

摘要

富营养化内陆水中的生物光学关系表现出空间异质性和非线性,这使得从多光谱卫星图像中反演叶绿素 a(Chl-a)浓度变得复杂。大多数研究都实现了令人满意的 Chl-a 估算,并且仅专注于近红外(NIR)到红光谱波段的光谱区域。然而,富营养化水的光学复杂性可能因位置和季节而异,这使得光谱波段的选择具有挑战性。因此,本研究提出了一种利用可用光谱模型进行优化的过程,以实现最佳的 Chl-a 反演。该方法首先生成一组特征候选者,然后进行候选者选择和优化。每个候选者都与一个 Chl-a 估算模型相关联,包括双波段、三波段和归一化的不同叶绿素指数模型。此外,使用可用光谱波段选择的一组候选者意味着估算模型的最佳组合,从而实现最佳的 Chl-a 估算。对日本霞浦湖的遥感图像和原位 Chl-a 测量进行了定量和定性分析,以评估所提出的方法。结果表明,该模型优于相关的 Chl-a 估算模型。所得到的模型(OptiM-3)获得的 Chl-a 浓度的均方根误差从 11.95 mg·m-3 改善到 6.37 mg·m-3,预测值与原位 Chl-a 之间的 Pearson 相关系数从 0.56 提高到 0.89。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e4b/6981683/f5c50556afc2/ijerph-17-00272-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验